Carbohydrates of biological importance

Ahmed Salem, MBBCH, MSc, PhD, FRCR <u>ahmed.salem@doctors.org.uk</u>

Majority of sides: Dr. Walaa Bayoumie El Gazzar

What does biochemistry deal with?

- Metabolism:
 - Anabolism
 - Catabolism

- Foods:
 - Oxidizable: carbohydrates, lipids, proteins
 - Non-oxidizable: minerals, vitamins, water

Syllabus

• 6.1 Define carbohydrates and list their classification.

• 6.2 Recognize the structure and functions of monosaccharides.

• Carbohydrates are organic compounds composed of carbon, hydrogen, and oxygen.

• Carbo=carbon, hydrates=hydrogen and oxygen in their proportion in water H2O

 They generally have the common formula (CH2O)n where the least number of n=3

Definition of carbohydrates

• Simple sugars or its derivatives

 Simple sugars are considered as polyhdroxyketones or polyhydroxyaldehydes

•where R can be a carbon-containing substituent.

Classification of Carbohydrates (according to hydrolysis):

- Monosaccharides: contain one sugar unit
 - E.g. glucose.
- **Disaccharides:** contain two sugar units
 - Maltose.
- Oligosaccharides: contain 3-10 sugar units
 - E.g. Raffinose
- Polysaccharides: contain more than 10 sugar units
 - Starch or glycogen.

I. Monosaccharides

- **Definition:** They are simple sugars that cannot be hydrolyzed into smaller one.
- Classification of monosaccharides:
- I. According to the number of carbon atoms: e.g.
- 1) Trioses: contain three carbon atoms.
- 2) Tetroses: contain four carbon atoms.
- 3) Pentoses: contain five carbon atoms.
- 4) Hexoses: contain six carbon atoms.

Classification of monosaccharides:

Classification of monosaccharides:

II. According to function group:

- Aldose
- Ketose

a carbonyl group (a carbon-oxygen double bond).

•where R can be a carbon-containing substituent.

Number of carbons	Aldo-sugars (e.g.)	Keto-sugars (e.g.)
3C (triose)	Glyceraldehyde	Dihydroxy acetone
4C (tetraose)	Erythrose	Erythrulose
5C (pentose)	Ribose Aldopentose	Ribulose
6C (hexose)	Glucose	Fructose

 Glyceraldehyde and dihydroxyacetone.(They are intermediates in the break down of glucose).

L- Glyceraldehyde

Dihydroxyacetone

Dihydroxyketose

Dihydroxyaldose

D & L denote the absolute configuration. i.e. D means that OH group on the subterminal carbon atom is at the right but L means OH group on the subterminal carbon atom is at the left.

- Examples of Tetroses are:
- Aldotetrose: Erythrose
- Ketotetrose: Erythulose

Erythrose was first isolated in 1849 from rhubarb

$$H - C = O$$

$$I$$

$$H - C - OH$$

$$I$$

$$H - C - OH$$

$$I$$

$$CH_2OH$$

Erythrulose/DHA reacts with the amino acids in the proteins of the first layers of skin (the stratum corneum and epidermis)

D-Erythrulose

D-Erythrose

D-Erythrulose

- Most physiologically important isomers that can be utilized in the body are the D form
- Some sugars occur naturally in their L-forms:
- L-arabinose and L-fucose (C6H12O5) which are components of glycoprotein
- L-xylulose (pentose) is an intermediate in metabolism and can be utilized by isomerization into D-form
- L- arabinose is an aldopentose present in some fruits such as cherries, grapes, plums, and prunes. Ingestion of large quantaties of these fruits leads to the appearance of L-arabinose in the urine, a condition called **alimentary pentosuria**.

- Examples of pentoses are:
- aldopentoses: ribose and deoxyribose, ketopentose: ribulose

D-Ribose

D- deoxyribose

D-Ribulose

Functions of pentoses:

- Ribose and deoxyribose enter in the structure of nucleic acids <u>RNA and DNA</u>.
- Ribose enters in the structure of ATP, GTP and other <u>high energy phosphate compounds</u>.
- Ribose enters in the structure of <u>coenzymes</u> NAD, NADP and flavoproteins.
- <u>Ribose phosphate and ribulose phosphate</u> are intermediates in pentose phosphate pathway (a minor pathway for glucose oxidation).
- They are components of some <u>vitamins</u> (ribitol in vitamin B2)

Asymmetric carbon atom:

 It is the carbon atom to which four different groups or atoms are attached. Any substance containing asymmetric carbon atom has optical activity & optical isomerism

 A polarimeter is a scientific instrument used to measure the angle of rotation caused by passing polarized light through an optically active substance.

Optical activity

- It is the ability of substance to rotate plane polarized light (P.P.L) either to the right or to the left.
- If the substance rotates plane polarized light (light vibrate in one direction) to the right it is called: <u>dextrorotatory</u> or <u>d</u> or <u>(+)</u>.
- If it rotates plane polarized light to the left it is called <u>levorotatory</u> or <u>l</u> or <u>(-)</u>.
- Glucose contains 4 asymmetric carbon atoms. It is dextrorotatory so it is named **dextrose**. Fructose contains 3 asymmetric carbon atoms. It is levorotatory so it is called **levulose**.

- The optical rotation is proportional to the concentration of the optically active substances in solution. Polarimetry may therefore be applied for concentration measurements
- Concentration and purity measurements are especially important to determine product or ingredient quality in the food & beverage and pharmaceutical industries.

Steroisomerism

- It is the ability of substance to present in more than one form (isomer).
- A substance containing one asymmetric carbon atom has 2 isomers.
- A substance containing 2 or more asymmetric carbon atoms can exist in a number of isomers
 = 2ⁿ where n is the number of asymmetric carbon atoms. e.g. glucose has 4 asymmetric carbon atoms so the number of its isomers equal 2⁴= 16 isomers.

Isomers

Compounds having same structural formula, but differing in spatial configuration are known as stereoisomers

Epimeric carbon & epimers:

- Epimers: These are sugars which differ only in the configuration around a single carbon atom. e.g. Glucose & mannose with respect to C₂. Also, glucose & galactose with respect to C₄.
- The contain more than one asymmetric carbon atom, all of which identical but only one is different.
- Epimeric carbon: e.g. carbon number 2 in glucose & mannose & carbon number 4 in glucose and galactose.

Examples of hexoses are:

- aldohexoses: glucose, mannose and galactose,
- ketohexoses: fructose

Galactose and mannose are not epimers but diastereo-isomers.

Aldoses and Ketoses

- aldo- and keto- prefixes identify the nature of the carbonyl group
- -ose suffix designates a carbohydrate
- Number of C's in the monosaccharide indicated by root (-tri-, tetra-, penta-, hexa-)

• Importance of hexoses:

D-glucose "grape sugar":

- It is called dextrose (dextro-rotatory).
- It is the most important sugar of carbohydrates.
- It is the main sugar in blood, ranging from 70-110 mg/dl.
- It is one of major sources of energy in the body.
- It is the principle sugar used by the tissues.
- It is widely present in fruits & vegetables associated with fructose.
- It enters in the formation of disaccharides & polysaccharides.
- In the liver & other tissues, it is converted to all carbohydrates in the body e.g. glycogen, galactose, ribose &fructose.

D-fructose "fruit sugar":

- It is called Levulose (levo-rotatory).
- It is the main sugar of semen (Source of energy for the sperms).
- It is sweeter than glucose.
- It is present in honey & fruits.
- It enters in the formation of sucrose.
- In the liver, it is converted into glucose.

D-galactose"milk sugar":

- It is synthesized in mammary gland to make the lactose of milk.
- In the liver, it can be converted into glucose.
- It enters in the structure of <u>glycolipids</u> which are found in many tissues especially in C.N.S.

D- mannose:

• It is a constituent of many glycoproteins.