2-Sample t-Test

 Independent t-Test
Independent t-Test

The independent t-Test compares the means of TWO samples from different populations

Jndependent t-Jest

- The Means of the two Samples are compared in the t-test to determine if there is a Statistically Significant difference
- The test is sometimes called the Independent Samples t-test
(Samples are said to be independent if they come from unrelated Populations and the Samples have no effect on each other)

Independent t-Test

EXAMPLE

In a test of a new drug, one Population took the drug and the other Population took the placebo

Independent t-Test

EXAMPLE

2-Sample \boldsymbol{t}-test			
Sample 1 Not trained $n_{1}=6$	Sample 2 Trained $n_{2}=5$		
J. Black	72	A. Conrad	76
T. Gerard	80	J. David	78
M. Lowry	78	W. Johns	83
P. Mason	74	F. Lyons	86
R. Vargas	79	M. White	61
B. Wilson	70		

Independent t-Test

Independent t-Jest

EXAMPLE

Do males and females differ in terms of their exam scores?

Take a sample of males and a separate sample of females and apply the hypothesis testing steps to determine if there is a Significant difference in scores between the groups

Jndependent t-Jest

Conditions to perform the Independent tTest

- Both samples the dependent variable should be normally distributed
- Both samples should be independent
- Both variances are equal
- Sample size NOT necessary the same

Independent t-Jest

Hypothesis statement

The Null hypothesis for the independent t-test is that the population means from the two unrelated groups are equal:

$$
H_{0}: u_{1}=u_{2}
$$

Independent t-Test

Alternative Hypothesis

The population means are not equal:

$$
H_{A}: u_{1} \neq u_{2}
$$

Independent t-Jest

$$
\begin{gathered}
t=\frac{\left(\bar{x}_{1}-\bar{x}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{S_{\bar{x}_{1}-\bar{x}_{2}}} \\
- \\
s_{\bar{x}_{1}-\bar{x}_{2}}=\sqrt{\frac{s_{\text {pooled }}^{2}}{n_{1}}+\frac{s_{\text {pooled }}^{2}}{n_{2}}}
\end{gathered}
$$

Independent t-Jest

Degrees of freedom for the independent t-Test

n1 + n2-2

Independent t-Test

Independent t-Test

Independent t-Test

You then need to define the groups (treatments). Click on the Defing Goups... button

Independent t-Test

Independent t-Test

Group Statisicics

	Group	N	Mean	Stud. Devidion	Stul. Erom Mean
Cholesterol	Diet	20	6.1450	51959	11618
	Exercise	20	5.7950	38179	08537

Independent t-Test

Independent Samples Test

			Cholesterol Concentration	
			Equal variances assumed	Equal variances not assumed
Levene's Test for Equality of Variances	F		. 314	
	Sig.		. 579	
t-test for Equality of Means	t		2.428	2.428
	df		38	34.886
	Sig. (2-tailed)		. 020	. 021
	Mean Difference		. 35000	. 35000
	Std. Error Difference		. 14418	. 14418
	95\% Confidence Interval	Lower	. 05813	. 05727
		Upper	. 64187	. 64273

Effect of Sleep and Caffeine on Memory

A study in which a sample of 24 adult are randomly divided equally into two groups and given a list of 24 words to memorize. During a break, one group takes a 90 -minute nap while another group is given a caffeine pill.
The response variable of interest is the number of words participants are able to recall following the break. We are testing to see if there is a difference in the average number of words a person can recall depending on whether the person slept or ingested caffeine

Independent t-Jest

```
    Sleep 14 18 11 13 18 17 21 9
    Caffeine 12 12 14 13 6
```

Which has more effect on the memory? Sleep OR Caffeine

Independent t-Test

Quiz vs Lecture Pulse Rate

Do you think that students undergo physiological changes when in potentially stressful situations such as taking a quiz or exam? A sample of statistics students were interrupted in the middle of quiz and asked to record their pulse rates (beats for 1-minute period). Ten of the students had also measured their pulse rate while siting in class listening to a lecture, and these values were matched with their quiz pulse rates

Independent t-Test

Student $1 \begin{array}{llllllllll} & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}$
Quiz $\begin{array}{llllllllllll}75 & 52 & 52 & 80 & 56 & 90 & 76 & 71 & 70 & 66\end{array}$ $\begin{array}{lllllllllll}\text { Lecture } & 73 & 53 & 47 & 88 & 55 & 70 & 61 & 75 & 61 & 78\end{array}$

