Approach to Hematuria

Doaa Al-Qaoud ,MD. Consultant Pediatric Nephrologist, Assistant Professor Department of Pediatrics, Faculty of medicine The Hashemite University. * Hematuria is one of the most important signs of renal or bladder disease, but, proteinuria is a more important diagnostic and prognostic finding, except in the case of calculi or malignancies.

* Hematuria is almost never a cause of anemia.

- * 49%; either confirmed or suspected UTI,
- * only 4%; renal parenchymal disease.

Hematuria

- * Approach to the evaluation of hematuria in a child No consensus
- The initial step in the evaluation of patients with red urine is to establish whether or not the urine discoloration is due to blood or another substance.

* Gross (Macroscopic) hematuria

→ blood that can be seen with the naked eye urinary tract ; bright-red, visible clots, or crystals with normallooking RBCs glomerular; Cola-colored, RBC casts, and dysmorphic RBCs

* Microscopic hematuria

 \rightarrow detected by a dipstick test during a routine exam. ; should be confirmed by microscopic examination

(10 ml of urine, spun at 2000 rpm for 5 min \rightarrow 9 ml, decanted \rightarrow sediment, resuspended and examined by microscopy by Hpf (x 400)

Definition

 Microscopic hematuria ≥ 5-10 RBCs/hpf is considered significant. asymptomatic child → at least 2 postive UA of 3 over 2- to 3week period

symptomatic child \rightarrow in a single urine sample

AAP recommends a screening urinalysis

 at school entry (4–5 years of age) &
 once during adolescence (11–21 years of age)
 as a component of well child–care.

Causes of red urine

- Dark brown, black **Disease states**

- * Alkaptouria
- * Homogentisic acid
- * Melanin
- * Methemoglobinuria
- * Tyrosinosis
- Ingestions
- * Alanine
- * Cascara
- * Resorcinol
- * Thymol

- Pink, red, tea-colored Disease states
- Hemoglobinuria
- Myoglobinuria
- Porphyrinuria
- Serratia marcescens
- Bile pigments
- Urates
- Ingestions
- Aminopyrine
- Beets
- Benzene
- Blackberries
- Ibuprofen
- Lead
- Rifampin ...

Causes of hematuria in children

* Glomerular diseases

Recurrent gross hematuria

(IgA nephropathy, Benign familial hematuria, Alport's syndrome)

Acute PSGN

MPGN

SLE

Membranous nephropathy RPGN

Henoch-Schonlein purpura

Goodpasture's disease

* Interstitial and tubular

Acute pyelonephritis Acute interstitial nephritis Tuberculosis Hematologic (sickle cell disease, von Willebrand's coagulopathies renal vein thrombosis, thrombocytopenia)

* Urinary tract

Bacterial or viral (adenovirus) infectionrelated

Nephrolithiasis and hypercalciuria

Structural anomalies, congenital anomalies, polycystic kidney disease

Trauma

Tumors

Exercise

Medications (aminoglycosides, amitryptiline, anticonvulsants, aspirin, chlorpromazine, coumadin, penicilline cyclophosphamide, diuretics, thorazine)

Distinguishing extraglomerular from glomerular hematuria

	Extraglomerular	Glomerular
Color (if macroscopic)	Red or pink	Red, smoky brown, or "Coca-Cola"
Clots	May be present	Absent
Proteinuria	Usually absent	May be present
RBC morphology	Normal	Dysmorphic
RBC casts	Absent	May be present

RBC: red blood cell.

 Based on documentation of history family history physical findings laboratory findings (RBC morphology, ± proteinuria)

 Initial evaluation should be directed toward and potentially life-threatening causes

hypertension, edema, oliguria,

Significant proteinuria (≥ 500mg/24hrs), or RBC casts

- * Next step \rightarrow CBC, streptozyme panel, serum C₃/C₄, serum Cr/K ...
- * BP & Urine output must be monitored frequently

important

- ★ Dysuria, frequency, urgency or flank or abdominal pain
 → Urinary tract infection or nephrolithiasis
- * Recent trauma, strenuous exercise, menstruation, catheterization \rightarrow transient hematuria
- * Sore throat or skin infection within past 2 to 4 wks \rightarrow postinfections glomerulonephritis Drugs and toxin ingestion
- * Family history
 - : hematuria, hearing loss, hypertension, nephrolithiasis, renal disease, renal cystic disease, hemophilia, dialysis or transplant ...

- * Presence of absence of hypertension or proteinuria
- * Fever or CVA tenderness \rightarrow UTI
- * Abdominal mass \rightarrow Tumor, hydronephrosis, MCK or PCK disease
- * Gross hematuria with proteinuria \rightarrow Glomerulonephritis.
- * Rashes & arthritis \rightarrow Henoch-Schonlein purpura and SLE.
- * Edema → Nephrotic syndrome

- * Presence of absence of hypertension or proteinuria
- * Fever or CVA tenderness \rightarrow UTI
- * Abdominal mass \rightarrow Tumor, hydronephrosis, MCK or PCK disease
- * Gross hematuria with proteinuria \rightarrow Glomerulonephritis.
- * Rashes & arthritis \rightarrow Henoch-Schonlein purpura and SLE.
- * Edema → Nephrotic syndrome

Lab studies

Proteinuria

- may be present regardless of the cause of bleeding
- blood origin ; usually not >2+(100 mg/dL) (especially, microscopic)
- 1- 2+ proteinuria; R/O orthostatic(postural) proteinuria.

a condition in which protein appears in the urine in otherwise healthy people who have been standing for a period of time in approximately 3 -15% of healthy young adults Dx ; 2 urine specimens - one right after waking the second about 2 hours after being upright

- > 2+ proteinuria ; glomerulonephritis & nephritic syndrome
- * RBC casts \rightarrow a highly specific marker for GN, not confirmative
- * Dysmorphic RBC \rightarrow Glomerular origin
- * Additional test (by suspected source of bleeding & Sx and Hx)

 \rightarrow Serum Cr, CBC, C3/C4, ANA, ASO, urine culture, Ca/Cr ratio

Diagnostic approach to hematuria

- * By history, physical examination and simple laboratory tests
- * Diagnostic algorithms for hematuria
 - Gross hematuria
 - Microscopic hematuria without abnormal findings
 Microscopic hematuria with abnormal findings

- * Painful; usually urologic conditions. (Glomerular; painless)
- * Cystoscopy → rarely reveals a cause for hematuria

Indications; suspicious bladder pathology to lateralize the source of bleeding (esp. during active bleeding)

Young girls with recurrent gross hematuria
 → a history of child abuse or insertion of a vaginal FB
 → P/Ex for the genital area

- The most commonly identified etiologies for gross hematuria in children include urinary tract infection (UTI), irritation of the meatus or perineum, and trauma.
- Other less common causes include nephrolithiasis, sickle cell disease/trait, coagulopathy, glomerular disease.

Most children with isolated microscopic hematuria
 Do not have a treatable or serious cause
 Do not require an extensive evaluation

Transient Hematuria

Causes of transient microscopic hematuria in children

Exercise	
Fever	
Trauma to kidney and/or urinary tract	
Urinary tract infection	
Urethritis	

Cause of asymptomatic isolated M/H

Common

Less common

- * Undetermined
- * Benign familial
- * Idiopathic hypercalciuria
- IgA nephropathy
- * Sickle cell trait or anemia
- * Transplant

- * Alport nephritis
- Postinfectious GN
- * Trauma
- Exercise
- * Nephrolithiasis
- * Henoch-Schonlein purpura

Cause of asymptomatic isolated M/H

Uncommon

Drugs and toxins Coagulopathy Ureteropelvic junction obstruction Focal segmental glomerulosclerosis Membranous glomerulonephritis Membranoproliferative glomerulonephritis Lupus nephritis Hydronephrosis Pyelonephritis Vascular malformation Tuberculosis Tumor

Diagnostic approach to M/H With abnormal findings

- * Varied clinical presentation and wide range of diagnositic possibilities .
- * Patients with hematuria from glomerular causes have the high risk for morbidity.
- * Microscopic hematuria with substantial proteinuria
- Minimal change nephrotic syndrome
- -IgA nephropathy
- -Alport's syndrome
- MPGN
- Membranous nephropathy
- -FSGN

Persistent microscopic hematuria

- * 33 children with persistent microscopic hematuria, 27 proteinuria(-)
- \rightarrow Renal biopsies (in 21/25) except 2 cases of UPJO
- 2 IgA nephropathy
- -1 hereditary nephritis
- -8 normal renal biopsies
- -10 nonspecific abnormalities
- * 325 children with isolated persistent microhematuria (1985– 1994) \rightarrow Hypercalciuria in 11%
- * Renal U/S in 87% & VCUG in 24% \rightarrow no clinically significant findings.

- * The most common diagnoses in persistent microhematuria without proteinuria :
- -Benign persistent or benign familial hematuria,
- -Idiopathic hypercalciuria,
- -IgA nephropathy,
- -Alport's syndrome,

 \rightarrow a more extensive evaluation is indicated only when **proteinuria** or other indicators are present.

Conclusion

- * Require a through history and physical examination !
- Only lab. test uniformly required for chidren with various presentat ion of hematuria is a complete UA with a microscopic examination !
- The rest of evaluation is tailored according to the pertinent history, PEx, and other abnormalities on the urinalysis.