# Approach to Immunodeficiency in Pediatrics

#### When to suspect immunodeficiency?

- 1. manifestations of a specific immune disorder.
- 2. family history of early infant death or a known immunodeficiency disorder.
- 3. Unusual, chronic, or recurrent infections such as
  - A. 1 or more systemic bacterial infections (sepsis, meningitis)
  - B. 2 or more serious respiratory or documented bacterial infections (cellulitis, abscesses, draining otitis media, pneumonia, lymphadenitis) within 1 yr
  - C. Serious infections occurring at unusual sites (liver, brain abscess)
  - D. Infections with unusual pathogens (Pneumocystis jiroveci, Aspergillus, Serratia marcescens, Nocardia, Burkholderia cepacia)
  - E. Infections with common childhood pathogens but of unusual severity.

#### When to suspect immunodeficiency?

- Additional clues to immunodeficiency include
  - FTT with or without ch. diarrhea
  - persistent infections after receiving live vaccines
  - chronic oral or cutaneous moniliasis

#### Characteristic clinical pattern in some primary immunodeficiency

| In newborn and child (0-6 months)                                        | Diagnosis                                                       |
|--------------------------------------------------------------------------|-----------------------------------------------------------------|
| Hypocalcaemia, heart disease, unusual faces                              | DiGeorge anomaly                                                |
| Delayed umbilical cord detachment,<br>leukocytosis, recurrent infections | Leukocyte adhesion defect                                       |
| Diarrhea, pneumonia, thrush, failure to thrive                           | Severe combined immunodeficiency                                |
| Maculopapular rash, alopecia,<br>lymphadenopathy                         | Severe combined immunodeficiency with graft-versus-host disease |
| Bloody stools, draining ears, eczema                                     | Wiskott-Aldrich syndrome                                        |
| Mouth ulcers, neutropenia, recurrent infections                          | XL-Hyper IgM syndrome                                           |

#### Characteristic clinical pattern in some primary immunodeficiency

| Infancy and young children (6 m-5 y)                                                       | Diagnosis                                            |
|--------------------------------------------------------------------------------------------|------------------------------------------------------|
| Severe progressive infectious mononucleosis                                                | X-linked lymph proliferative syndrome                |
| Recurrent cutaneous and/or systemic<br>staphylococcal abscesses, coarse facial<br>features | Hyper-IgE syndrome                                   |
| Persistent thrush, nail dystrophy,<br>endocrinopathies                                     | Chronic mucocutaneous candidiasis                    |
| Short stature, fine hair, severe varicella                                                 | Cartilage hair hypoplasia with short-limbed dwarfism |
| Oculocutaneous albinism, recurrent infection                                               | Chédiak-Higashi syndrome                             |
| Lymphadenopathy, dermatitis, pneumonia,<br>osteomyelitis                                   | Chronic granulomatous disease                        |
|                                                                                            |                                                      |

#### Characteristic clinical pattern in some primary immunodeficiency

| In older children (>5 years) and adults                             | Diagnosis                                 |
|---------------------------------------------------------------------|-------------------------------------------|
| Progressive dermatomyositis with chronic enterovirus encephalitis   | X-linked agammaglobulinemia               |
| Sinopulmonary infections, neurologic deterioration, telangiectasia  | Ataxia-telangiectasia                     |
| Recurrent neisserial meningitis                                     | C6, C7, or C8 deficiency                  |
| Sinopulmonary infections, malabsorption, splenomegaly, autoimmunity | Common variable immunodeficiency          |
| Candidiasis with raw egg ingestion                                  | Biotin-dependent cocarboxylase deficiency |

# Initial Screening Immunologic Testing of the Child with Recurrent Infections

#### CBC with differentiation and ESR

- Absolute lymphocyte count (ALC); normal result rules against T-cell defect
- Absolute neutrophil count(ANC); normal result rules against congenital or acquired neutropenia and [usually] both forms of leukocyte adhesion deficiency, in which elevated counts are present even between infections
- Platelet count; normal result excludes Wiskott-Aldrich syndrome
- Howell-Jolly bodies; absence rules against asplenia

# Initial Screening Immunologic Testing of the Child with Recurrent Infections

#### Screening tests for B cell defects

Immunoglobulin (Ig) A measurement; if abnormal, IgG and IgM measurement

=

- Isohemagglutinins
- Antibody titers to blood group substances, tetanus, diphtheria, Haemophilus influenzae, and pneumococcus
- Screening tests for T cell defects
  - Absolute lymphocyte count; normal result indicates T-cell defect unlikely
  - Flow cytometry to examine for the presence of naïve T cells (CD3+CD45RA+ cells)
- Screening tests for phagocytic cell defects
  - Absolute neutrophil count
  - Respiratory burst assay
- Screening tests for complement deficiency
  - CH50

# Primary Defects of Antibody Production

#### **Primary Defects of Antibody Production**

- Most frequent.
- Selective absence of serum and secretory immunoglobulin (Ig)A is the most common defect.
- Recurrent infections with encapsulated bacteria.

#### Dx of: Primary Defects of Antibody Production

- Serum immunoglobulin levels
- Antibody titers to protein and polysaccharide antigens.
- A simple screening test for B-cell defects is the measurement of serum immunoglobulin (Ig) A
- Patients found to be agammaglobulinemic should have their blood B cells enumerated by flow cytometry

#### **Primary Defects of Antibody Production**

- 1. X-linked agammaglobulinemia
- 2. Common variable immunodeficiency (CVID)
- 3. Selective IgA deficiency
- 4. Selective IgG subclass deficiencies
- 5. Hyper-IgM syndrome

#### X-linked agammaglobulinemia

- Patients with X-linked agammaglobulinemia (XLA), also called Bruton agammaglobulinemia, have a profound defect in B-lymphocyte development
- The primary defect in XLA is the failure of pre-B cells to differentiate into mature B lymphocytes
- Only 10% of patients are girls.

# X-linked agammaglobulinemia

**Clinical Manifestations** 

- Most boys with XLA remain well during the 1st 6-9 mo of life.
- They acquire infections with extracellular pyogenic organisms
- Infections include sinusitis, otitis media.....

# X-linked agammaglobulinemia

#### **Diagnosis**

- Lymphoid hypoplasia is found on physical examination
- serum concentrations of IgG, IgA, IgM, and IgE are far below the 95% confidence limits
- Levels of natural antibodies to type A and B red blood cell polysaccharide antigens (isohemagglutinins) and antibodies to antigens given during routine immunizations are abnormally low in this disorder
- **Flow cytometry** demonstrates the absence of circulating B cells.

#### Common variable immunodeficiency CVID

- CVID is a syndrome characterized by hypogammaglobulinemia with phenotypically normal B cells.
- Most of the patients usually do not become symptomatic until 15-35 years of age.
- CVID patients have an increased risk of developing autoimmune diseases, lymphatic and gastrointestinal malignancies, malabsorption and granulomatous inflammation.

### Common variable immunodeficiency

► The diagnosis of CVID is based on :

low IgG levels

- IgM and IgA levels may present in significant amounts or absent
- Poor specific antibody responses to immunizations
- T cell and B cell enumeration are usually normal
- Some patients may have abnormal T cell function

# Selective IgA deficiency

- Most common immunodeficiency disorder.
- Infections occur predominantly in the respiratory, gastrointestinal, and urogenital tracts.
- Intestinal giardiasis is common.
- Serum concentrations of other immunoglobulins are usually normal
- ▶ IgA deficiency is associated with Celiac.

# Selective IgA deficiency

- The incidence of autoantibodies, autoimmune diseases, and malignancy is increased.
- Only 5-times washed Packed RBC should be administered to patients with IgA deficiency.
- Many intravenous immunoglobulin (IVIG) preparations contain sufficient IgA to cause anaphylactic reactions.

### Hyper-IgM syndrome HIM

The hyper-IgM syndrome is characterized:

- normal or elevated serum IgM levels
- Iow or absent IgG, IgA, and IgE serum levels, indicating a defect in the class-switch recombination (CSR) process.
- HIM presents with recurrent sinopulmonary infections and Pneumocystis carinii pneumonia (PCP).
- The unique susceptibility to opportunistic infections and neutropenia with high IgM levels distinguishes HIM from XLA or other hypogammaglobulinemias.

### Hyper-IgM syndrome

#### Treatment:

► IVIG

trimethoprim-sulfamethoxazole to prevent PCP.

stem cell transplantation.

Prognosis: worse than in other forms of hypogammaglobulinemia.

### X-Linked lymphoproliferative disease

- XLP disease, also referred to as Duncan disease is an Xlinked recessive trait characterized by an inadequate immune response to infection with Epstein-Barr virus (EBV).
- ▶ The mean age of presentation is <5 yr.
- XLP has an unfavorable prognosis; 70% of affected boys die by age 10 years.

### **Treatment of B-Cell Defects**

- Antibiotics
- IVIG monthly
  - ▶ (IVIG or SCIG).
  - Anaphylactic reactions if patient has :CVID or IgA deficiency.

# Primary Defects of Cellular Immunity

#### **Primary Defects of Cellular Immunity**

- T-cell more severe than B-cell (antibody deficiency disorders)
- Die at infancy or childhood.
- T cells and T-cell subpopulations can be enumerated by flow cytometry
- Flow cytometry

### Thymic Hypoplasia; DiGeorge syndrome

- Dysmorphogenesis of the 3rd and 4<sup>th</sup> pharyngeal pouches during early embryogenesis, leading to hypoplasia or aplasia of the thymus and parathyroid glands.
- Suspected if: hypocalcemic seizures during the neonatal period
- The CATCH 22 syndrome (cardiac, abnormal facies, thymic hypoplasia, cleft palate, hypocalcemia) includes the broad clinical spectrum of conditions with 22q11.2 deletions.
- Partial or complete DiGeorge syndrome

### Thymic Hypoplasia; DiGeorge syndrome

- 1/3 of complete DiGeorge syndrome have CHARGE association
- Concentrations of serum immunoglobulins in DiGeorge syndrome are usually normal
- Absolute lymphocyte counts are usually only moderately low for age
- Thymic tissue, when found, contains Hassall corpuscles, a normal density of thymocytes, and corticomedullary distinction
- Lymphoid follicles are usually present

#### **CHARGE** Association

- C Coloboma
- 🕨 H Heart
- A Atresia of Chonae
- **R** Retardation of growth and/or development
- ▶ G Genital : Undesedended testicle, hypospadias or hypogonadism
- E Ear: deafness and abnormally bowl-shaped and concave ears, known as "lop ears".

### Thymic Hypoplasia; DiGeorge syndrome

#### **Clinical Manifestations**

- Children with partial thymic hypoplasia may have little trouble with infections and grow normally
- Patients with complete DiGeorge syndrome resemble patients with severe combined immunodeficiency
- Complete DiGeorge is fatal without treatment
- A T-cell count should be obtained on all infants born with primary hypoparathyroidism, CHARGE syndrome, truncus arteriosus, and interrupted aortic arch
- Rx: thymic tissue transplants.

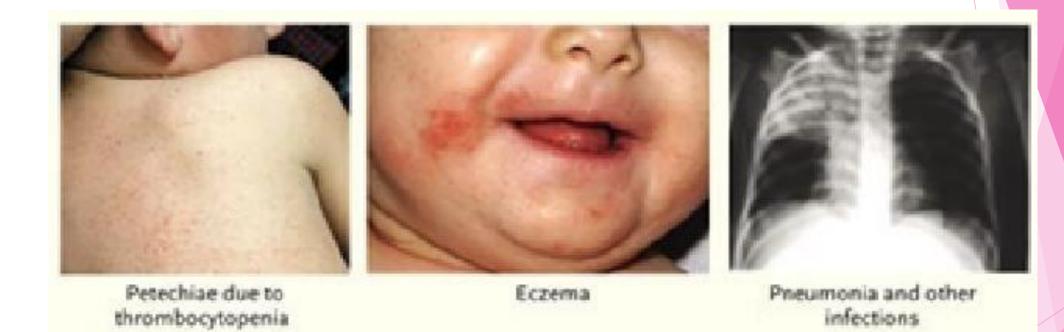
Primary Combined Antibody and Cellular Immunodeficiencies

### Severe Combined Immunodeficiency SCID

- Gene mutation
- All patients with SCID have very small thymuses
- Spleen are depleted of lymphocytes.
- Lymph nodes, tonsils, adenoids, and Peyer patches are absent or extremely underdeveloped

### Severe Combined Immunodeficiency

#### Clinical manifestation


- Affected infants present within the 1st few mo of life
- recurrent or persistent diarrhea, pneumonia, otitis media, sepsis, and cutaneous infections.
- Growth may appear normal initially.
- Persistent infections with opportunistic lead to death.
- At risk for severe or fatal graft-versus host disease (GVHD)

### Severe Combined Immunodeficiency

- All molecular types of SCID lack T cells
- Serum immunoglobulin concentrations are low or absent
- Analyses of lymphocyte populations and subpopulations demonstrate distinctive phenotypes for the various genetic forms of SCID.

### Severe Combined Immunodeficiency

- SCID is a true pediatric emergency.
- >92% of cases can be treated successfully with hematopoietic stem cell transplantation.



### Wiskott-Aldrich syndrome

Wiskott-Aldrich syndrome is characterized by:

Atopic dermatitis

Thrombocytopenic purpura with normal-appearing megakaryocytes but small defective platelets

Undue susceptibility to infection.

#### Wiskott-Aldrich syndrome

- Patients often have prolonged bleeding
- Atopic dermatitis and recurrent infections usually develop during the 1st yr of life
- Survival beyond the teens is rare
- Patients with this defect uniformly have an impaired humoral immune response to polysaccharide antigens
- The predominant immunoglobulin pattern is a low serum level of IgM, elevated IgA and IgE, and a normal or slightly low IgG concentration

#### Wiskott-Aldrich syndrome

- Good supportive care
- Aggressive management of eczema
- platelet transfusion for serious bleeding episodes
- Bone marrow or cord blood transplantation is the treatment of choice

#### Ataxia-telangiectasia

- Ataxia-telangiectasia is a complex syndrome with immunologic, neurologic, endocrinologic, hepatic, and cutaneous abnormalities
- The most prominent clinical features are
  - progressive cerebellar ataxia
  - oculocutaneous telangiectasias
  - chronic sinopulmonary disease
  - high incidence of malignancy
  - variable humoral and cellular immunodeficiency.

### Treatment of Cellular or Combined Immunodeficiency

- Good supportive care is critical while patients await more definitive therapy.
- Bone Marrow Transplantation of MHC-compatible sibling or rigorously T-celldepleted haploidentical (half-matched) parental hematopoietic stem cells is the treatment of choice for patients with fatal T-cell or combined T- and Bcell defects.
- Of patients with SCID, 92% have survived after T-cell-depleted parental marrow is given soon after birth when the infant is healthy.
- Currently, bone marrow transplantation remains the most important and effective therapy for SCID.

# Disorders of Phagocyte Function

### **Disorders of Phagocyte Function**

- Neutrophils are the first-line of defense against microbial invasion.
- Children with phagocytic defects present with deep tissue infection, pneumonia, adenitis, or osteomyelitis.
- Chemotaxis and motility defects present with significant skin and mucosal infections.

- Leukocyte adhesion deficiency 1 (LAD-1), 2 (LAD-2), and 3 (LAD-3) are rare autosomal recessive disorders of leukocyte function.
- LAD-1 affects about 1 per 10 million individuals and is characterized by recurrent bacterial and fungal infections and depressed inflammatory responses despite striking blood neutrophilia.
- The neutrophils have significant defects in adhesion, motility, and ability to phagocytose bacteria

- LAD-1 results from mutations of the gene on chromosome 21 encoding CD18 B2-leukocyte transmembrane integrin subunit.
- This group of leukocyte integrins is responsible for the tight adhesion of neutrophils to the endothelial cell surface, egress from the circulation, and adhesion to iC3b-coated microorganisms
- Neutrophils cannot transmigrate through the vessel wall and move to the site infection.
- Neutrophils that do arrive at inflammatory sites fail to recognize microorganisms opsonized with complement fragment iC3b
- Monocyte function is also impaired

- Children with LAD-2 share the clinical features of LAD-1 but have normal CD11/CD18 integrins.
- Features unique to LAD-2 include: neurological defcts, cranial facial dysmorphism, and absence of the erythrocyte ABO blood group antigen.
- Infections in LAD-2 are milder than that in LAD-1.
- LAD-3 is characterized by a Glanzmann thrombasthenia-like bleeding disorder.

- Children with severe forms of LAD present in infancy with recurrent, indolent bacterial infections.
- Significant neutrophilic leukocytosis, often >25,000/mm3, is a prominent feature.
- Delayed separation of the umbilical cord, usually with associated infection of the cord stump.
- Infected areas characteristically have very little neutrophilic infiltration.

- The pathogens similar to those affecting patients with severe neutropenia:
  - Staphylococcus aureus
  - ▶ Gram-negative organisms such as *Escherichia coli*.
- Typical signs of inflammation may be absent. Pus does not form, and few neutrophils are identified microscopically in biopsy specimens of infected tissues.
- The circulating neutrophil count during infection typically exceeds 30,000/µL and can surpass 100,000/µL

- The diagnosis of LAD-1 is established most readily by flow cytometric measurements of surface CD11b/CD18 in stimulated and unstimulated neutrophils.
- Delayed-type hypersensitivity reactions are normal, and most individuals have normal specific antibody synthesis.
- The diagnosis of LAD-2 is established by flow cytometric measurement of sialyl Lewis X (CD15) on neutrophils.

- Early allogeneic hematopoietic stem cell transplantation (HSCT) is the treatment of choice for severe LAD-1 and LAD-3.
- Other treatment is largely supportive.
- Some LAD-2 patients have responded to fucose supplementation.
- The severity of infectious complications correlates with the degree of B2-integrin deficiency.

#### Chédiak-Higashi syndrome CHS

- Chédiak-Higashi syndrome (CHS) is a rare autosomal recessive disorder characterized by increased susceptibility to infection caused by
  - defective degranulation of neutrophils
  - mild bleeding diathesis
  - partial oculocutaneous albinism
  - progressive peripheral neuropathy
  - and a tendency to develop a life-threatening form of hemophagocytic lymphohistiocytosis

#### Chédiak-Higashi syndrome

- The diagnosis of CHS is established by finding large inclusions in all nucleated blood cells.
- The patients have progressive neutropenia and abnormal platelet, neutrophil, and NK function.
- High-dose ascorbic may improve the clinical status of some children in the stable phase.
- The only curative therapy to prevent the accelerated phase is HSCT.

- CGD is characterized by neutrophils and monocytes capable of normal chemotaxis, ingestion, and degranulation, but unable to kill catalase positive microorganisms because of a defect in the generation of microbicidal oxygen metabolites.
- CGD is a rare disease with an incidence of 4-5 per 1 million individuals; it is caused by 4 genes, 1 X-linked and 3 autosomal recessive in inheritance.

- They present with recurrent pneumonia, lymphadenitis, hepatic or subcutaneous or other abscesses, osteomyelitis at multiple sites, a family history of recurrent infections, or any infection with an unusual catalase-positive organism.
- The onset of clinical signs and symptoms usually occurs in early infancy
- ► The most common pathogen is S. *aureus*

- Perirectal abscesses and recurrent skin infections.
- Granuloma formation and inflammatory processes are a hallmark of CGD
- More than 80% of CGD patients have positive serology for Crohn disease.
- Persistent fever especially with splenomegaly and cytopenia warrants an evaluation for secondary macrophage activation syndrome (MAS)

- > Dx: flow cytometry using dihydrorhodamine 123 (DHR).
- The nitroblue tetrazolium dye test (NBT) is frequently cited in the literature but is now only rarely used clinically.
- ► HSCT is the only known **cure** for CGD.

#### Disorders of the complement system

- Suspected if:
  - recurrent angioedema, autoimmune disease, chronic nephritis, hemolytic uremic syndrome, or partial lipodystrophy, or with recurrent pyogenic infections, disseminated meningococcal or gonococcal infection.
- Testing for total hemolytic complement activity (CH50) effectively screens for most of the common diseases of the complement system.
- No specific therapy is available at present for genetic deficiencies of the components of the classical, alternative, and lectin complement pathways.
- Give MCV and PCV vaccines

### Live Vaccines in Children with Immune deficiency

#### Vaccine Use

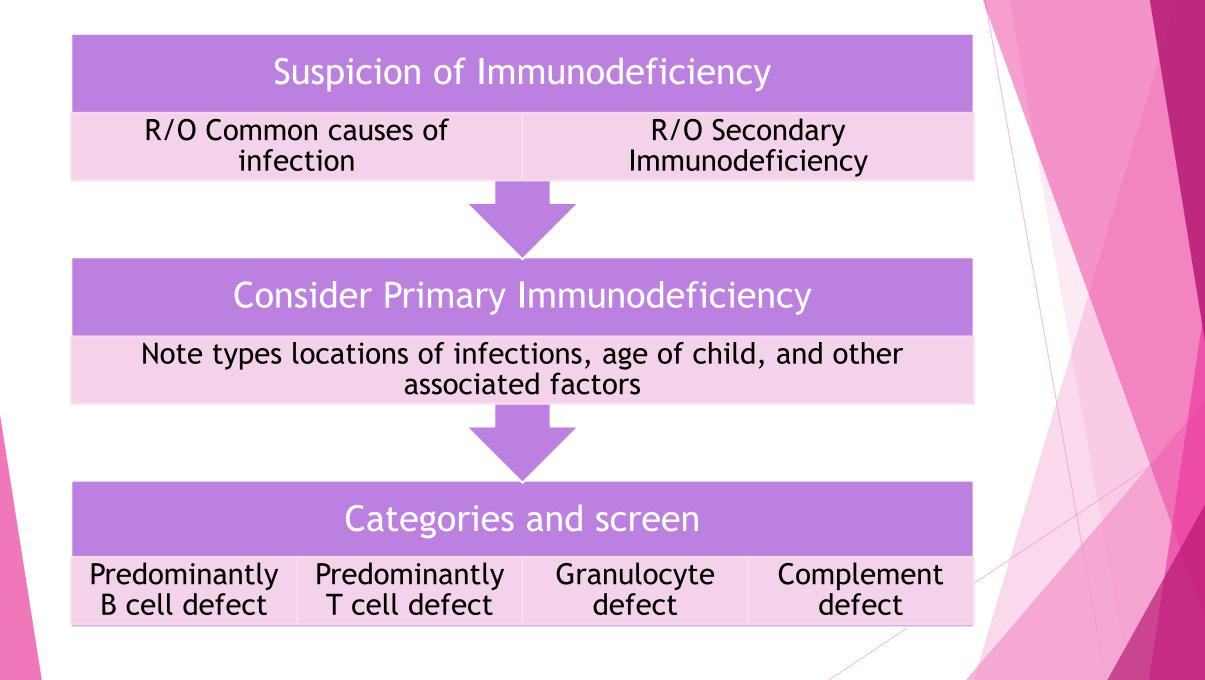
B cell:

- Severe(aggama.)
- Less severe:

(IgA, subclass IgG) T cell: Comp deficiency Cancer Rx Phag. Dysfunction Most live contraindicated (no data for rota and Var)

live appear safe, caution live contraindicated All safe – give mening. Usually OK 3 mo. p Rx Routine prob. Safe\* Adapted from Table 1.14 Red Book 2009

#### Vaccines in Persons With Phagocyte Function Abnormalities


CGD, leukocyte adhesion defects, Myeloperoxidase deficiency

Live bacterial (BCG) contraindicated

Live viral probably safe

Inactivated safe and probably effective

## Thank you

