Chronic visual loss

Raed Shatnawi, MD, FRCS (Glasg) Assistant Professor of Ophthalmology Hashemite University Medical School Jordan raed972@yahoo.com

Gradual decrease in vision

- Cataract
- Open Angle Glaucoma
- Age related macular degeneration
- Diabetic Retinopathy, hereditary retinopathies.
- Corneal Opacity

and the state of t

CATARACT

- Lens : Is <u>biconvex</u> and normally <u>transparent</u>.
- It is held in position by the <u>suspensory ligament</u> (Zonule).
- Diseases that affect the lens may affect:
 - 1) Structure
 - 2) Shape
 - 3) Position

Cataract (Definition)

Opacification of the lens of the eye

It is the most common cause of treatable blindness in the world

• Occur as a result of cumulative exposure to environmental and other influences, such as smoking, UV radiation and elevated blood sugar levels.

Pre-senile

• Which may be associated with <u>specific ocular</u> or <u>systemic</u> <u>diseases</u>

Ocular conditions

Systemic causes

-	Diabetes
	Other metabolic disorders (galactosaemia, hypocalcaemia)
·	Systemic drugs (steroids , chlorpromazine)
-	Infection (congenital rubella)
•	Myotonic dystrophy
•	Atopic dermatitis
•	Systemic syndromes (Down's, Lowe's)
•	Congenital Cataract (inherited)
	External radiation

Age Related Cataract

The main types of age-related cataracts are :

- 1. Nuclear sclerosis
- 2. Cortical
- 3. Posterior subcapsular.

1)Nuclear sclerosis cataract

The most common type of cataract and many consider them to be a normal maturation of the lens.
Over time, the lens becomes <u>larger and brunescent</u> (yellow or brown) especially in the denser central nucleus.

The lens can become so big that it pushes the iris forward, placing the patient at increased risk for *angle closure glaucoma*.

Some patients with nuclear sclerotic cataracts will develop so called "second sight" where it seems like the vision improves. This is because the round cataract lens is more powerful and offsets the coexisting presbyopia allowing older patients to read better.

 Exaggeration of normal nuclear ageing change 	 Increasing nuclear opacification
Causes increasing myopia	Initially yellow then brown

2) Cortical Cataract

Are due to opacification of the lens cortex (outer layer). They occur when changes in the water content of the periphery of the lens causes fissuring.

When these cataracts are viewed through an ophthalmoscope or other magnification system, the appearance is similar to <u>white spokes of a wheel pointing</u> <u>inwards</u>.

Symptoms often include: problems with glare and light scatter at night.

3) Posterior subcapsular

- □ Forms on the <u>back of the lens</u>, on the inner surface of the posterior capsule bag.
- □ These cataracts tend to <u>occur in patients</u> on steroids, with diabetes, and those with history of ocular inflammation.
- The opacity <u>looks like</u> breadcrumbs or sand sprinkled onto the back of the lens. This posterior location creates significant vision difficulty despite appearing innocuous on slit-lamp exam.

Congenital cataract

 \Box It is found in about 1/250 live births

Roughly one third is hereditary with autosomal dominant being the most common,

One third is associated with a syndrome or metabolic disease, and the cause in the remainder is unknown.

Congenital cataract is still one of the most common causes of blindness in children worldwide.

□ A cataract of sufficient degree causes:

- 1. Painless loss of vision (Progressive)
- 2. Glare
- 3. Change in refractive error
- 4. Amblyopia (in children)

- 1. Decreased visual acuity especially when measured in light
- 2. Lens opacity
- 3. Black spot against the red reflex
- 4. Location of the cataract

□ Visual acuity

☐ fundoscopy

Further investigations is required if <u>systemic disease</u> is suspected or if the cataract is <u>congenital</u> or appears at an <u>early age</u>.

Although much effort has been directed towards slowing progression or preventing cataract, **management remains surgical.**

Techniques:

- 1. Phacoemulsification (new)
- 2. Extra Capsular Cataract Extraction (ECCE)
- 3. Intra Capsular Cataract Extraction (ICCE) (old)

Phaco and ECCE <u>involves</u> removal of the lenticular material <u>leaving</u> part of the lens capsule mostly the posterior part to give supprot for the artificial lens that will be implanted.

□ ICCE removal of the whole lens

Phacoemulsification

1. Capsulorhexis

3. Sculpting of nucleus

5. Emulsification of each quadrant

2. Hydrodissection

4. Cracking of nucleus

6. Cortical cleanup and insertion of IOL

Extracapsular cataract extraction

1. Anterior capsulotomy

3. Expression of nucleus

5. Care not to aspirate posterior capsule accidentally

2. Completion of incision

4. Cortical cleanup

6. Polishing of posterior capsule, if appropriate

Extracapsular cataract extraction (cont.)

7. Injection of viscoelastic substance

9. Insertion of inferior haptic and optic

11. Placement of haptics into capsular bag and not into ciliary sulcus

8. Grasping of IOL and coating with viscoelastic substance

10. Insertion of superior haptic

12. Dialing of IOL into horizontal position

Post-Operative care

Steroids (topical, systemic)

Antibiotics (topical, systemic)

Near vision adds

Complications of Surgery

- Can be divided into :
- **Preopertaive**: which can be further divided into those related to ocular diseases and those related to systemic diseases.
- Intraoperative: divided into those related to anesthesia and those related to surgery itself
- **Postoperative**: divided into early and late

Treatment of cong. cataract

Visual outcome depends on :

✓ The density of the cataract at and before the time of surgery✓ Age of onset

✓ Age at time of surgery and

✓ Very important a commitment parents.

- The timing of cataract surgery is the major factor in visual rehabilitation
- Before the age of 2 months, nystagmus is generally not present and the visual prognosis is excellent, provided that aggressive treatment of aphakia and amblyopia take place
- Bilateral cataracts have a better outcome than monocular ones. This is because the amblyopia of the cataract eye puts it at an irreversible disadvantage in comparison with the fellow eye as the child learns how to see.

- Babies with dense cataract who are not operated before the age of 2 months, showing nystagmus, have a guarded prognosis
- Acuity may never be better than 20/200. Because poor vision may be reversed, surgery should be performed as soon as possible

The recommended surgery is lensectomy and vitrectomy which will result in aphakia, which is as amblyopiogenic as the cataract itself

Therefore aggressive treatment of the aphakia is essential

After the age of 2 years there is a general agreement to use intraocular lenses (IOLs)

Sefore the age of 2 years, the use of IOLs is still controversial and usage of contact lenses or glasses is the rule

Placement of secondary IOL at a later age is accepted

we have a first of the generative

GLAUCOMA

- A heterogeneous group of diseases in which the end result is damage to the optic nerve fibers .
- Mostly caused by the effect of raised intraocular pressure (IOP)
- Normal values of IOP is 16 (±5).

IOP

Depends on the balance between production and removal of aqueous humour.

Aqueous humour production

- Active secretion by the ciliary processes
- Ultra filtration

Aqueous humour excretion

- Conventional pathway :(95%) via trabecular meshwork ,Schlemm's canal and the episcleral veins
- Uveoscleral pathway : (5%) through the iris and ciliary body into the supra-choroidal space and the venous system through the sclera

Aqueous outflow

Mechanism of Optic nerve fiber damage

□ Mechanical damage by the raised IOP

□ Ischemia of nerve fibers caused by impaired perfusion pressure

Cup-to-Disc Ratio (CDR)

- The cup-to-disc ratio is a measurement used in ophthalmology **to assess the progression of glaucoma**.
- The **optic disc** is the anatomical location of the eye's "blind spot", the area where the optic nerve and blood vessels enter the retina.
- The optic disc can be flat or it can have a certain amount of normal cupping. But glaucoma, which is due to an increase in intra-ocular pressure, produces additional pathological cupping of the optic disc.

With the loss of nerve fibers from glaucoma, the cup becomes progressively larger because there is less space occupied by the remaining nerve fibers

The *optic nerve is divided into tenths* and the cup is compared to the entire optic nerve (optic disc) to obtain the cup-to-disc ratio.

The normal c/d ratio is 0.3(The C/D ratio here is 0.4)

Progression of glaucomatous cupping

- a. Normal (c:d ratio 0.2)
- b. Concentric enlargement (c:d ratio 0.5)
- c. Inferior expansion with retinal nerve fibre loss
- d. Superior expansion with retinal nerve fibre loss
- e. Advanced cupping with nasal displacement of vessels
- f. Total cupping with loss of all retinal nerve fibres

Primary Glaucoma

- Classification of the primary glaucomas is based on whether or not the iris is:
 - Clear of the trabecular meshwork (open angle) → (**POAG**)
 - Covering the meshwork (closed angle) → (PACG)

ANGLE: the iridocorneal angle

OPEN AND CLOSED ANGLE GLAUCOMA

How to examine the ANGLE

• Using special lenses which allows visualization of the angle structure to determine whether the angle configuration is closed or open [*Goniolenses*].

Pathogenesis open Angle

- In OAG the trabecular meshwork appears normal but offers an increased resistance to the outflow <u>due to</u>:
- 1* Thickening of the trabecular lamellae
 2* Reduction in the number of lining trabecular cells
 3* Increased extracellular materials in the trabecular meshwork

Chronic Open Angle Glaucoma

- Affects 1 in 200 of the population > 40y
- Males and Females are equal
- Incidence increase with age 10% in > 80y
- Exact mode of inheritance not clear though incidence increase in first degree relatives .

Usually *asymptomatic* because the rise in IOP is slow and chronic \rightarrow Patients will <u>present with</u> progressive loss of vision or Visual field defects .

• Examination :

- Vision Visual field Slit Lamb Exam
- IOP (normal range) Gonioscopy
- Ophthalmoscopy to examine Cup to Disc ratio

- 1- Medical Treatment
- 2-Laser Treatment
- 3- Surgical Treatment

Aim of treatment is to decrease the IOP.

Amount of decrease depends on the level at which no more damage to the optic nerve happens

Medical treatment

TREATMENT OF GLAUCOMA

Topical agents	Action	Side effects
Beta-blockers (timolol, carteolol, levobunolol, metipranolol, betaxolol-selective)	Decrease secretion	Exacerbate asthma and chronic airway disease Hypotension, bradycardia
Parasympathomimetic (pilocarpine)	Increase outflow	Visual blurring in young patients and those with cataracts Initially, headache due to ciliary spasm
Sympathomimetic (adrenaline, dipivefrine)	Increase outflow Decrease secretion	Redness of the eye Headache
Alpha2-agonists (apraclonidine, brimonidine)	Increase outflow through the uveoscleral pathway Decrease secretion	Redness of eye Fatigue, drowsiness

Carbonic anhydrase inhibitors (dorzolamide, brinzolamide)	Decrease secretion	Stinging Unpleasant taste Headache
Prostaglandin analogues (latanoprost, travaprost, bimatoprost, unoprostone)	Increase outflow through the uveoscleral pathway	Increased pigmentation of the iris and periocular skin Lengthening and darkening of the lashes, conjunctival hyperaemia Rarely, macular oedema, uveitis
Systemic agents		
Carbonic anhydrase	Decrease secretion	Tingling in limbs
inhibitors		Depression, sleepiness
(acetazolamide)		Renal stones
		Stevens–Johnson syndrome

If intraocular pressure remains elevated the choice lies between:

- adding additional medical treatment;
- laser treatment;
- •surgical drainage procedures.

Involves placing series of laser burns in the trabecular meshwork to improve aqueous flow

Surgical Treatment

• Drainage surgery (Trabeculectomy) by creating a fistula between the anterior chamber and the subconjuctival space

Technique

The appearance of a trabeculectomy bleb.

AGE-RELATED MACULAR DEGENERATION

Age-Related Macular Degeneration

• Age related macular degeneration (AMD) is the <u>commonest cause of irreversible visual loss</u> in the developed world.

Dry \ Non-exudative ARMD

Pathogenesis :

Normally the RPE metabolizes the outer segment of the photoreceptors and get rid of the lipofucin and other metabolites resulting from its damage.
 With age this function decreases and these metabolites start to accumulate in the Bruch's

membrane.

• Deposits form which can be seen with the ophthalmoscope as discrete sub-retinal yellow lesions called *drusen*.

EXUDATIVE ARMD

Wet\Exudative ARMD

- There is a new blood vessels growing from the choroid invading the Bruch"s membrane and growing under the retina (*sub-retinal neovascular membrane*).
- The hallmark: choroidal neovascularization (CNV)
- This will lead to subsequent hemorrhages, scaring and foveal detachment.

Dry macular degeneration

- ✓ The tissues of the macula are thin as cells disappear.
- No evidence of scaring or of bleeding or other fluid leakage in the retina.
- Both eyes may be affected simultaneously.
- Central vision slowly and painlessly worsens.

Wet macular degeneration

- ✓ Abnormal blood vessels develop in the layer of tissue under the macula
- These vessels may leak fluid and blood under the retina in that area. Eventually a mound of scar tissue develops under the retina.
- ✓ It develops in one eye first but eventually affects both eyes.
- ✓ Loss of vision tends to progress quickly and may be particularly sudden if one of the abnormal blood vessels bleed.

• A doctor can usually diagnose macular degeneration by examining the eyes with an ophthalmoscope or slit lamp. Sometimes <u>fluorescein angiography</u> is used to determine the diagnosis

dry AMD, note the discrete scattered yellowish sub-retinal drusen

wet AMD, note the small haemorrhage associated with the subretinal membrane

• Management:

- □ For dry AMD.. No medical or surgical treatment is available; however, the AREDS trial found benefits with some vitamin along with high doses of antioxidants.
- □ For wet AMD.. Antiangiogenics can cause regression of the abnormal blood vessels and improve vision as:
 - I. Bevacizumab (Avastin)
 - II. Ranibizumab (Lucentis)

