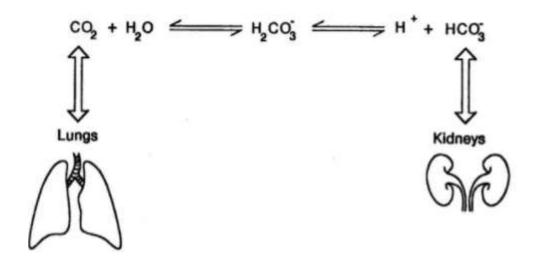
Acid-base disturbances

4th years

Mohammad Hassan Al-thnaibat

Outlines


- Basics and terminology
- Acid base regulation
- Respiratory acidosis and alkalosis
- Metabolic acidosis: AGMA and NAGMA
- Metabolic alkalosis
- 7 steps approach

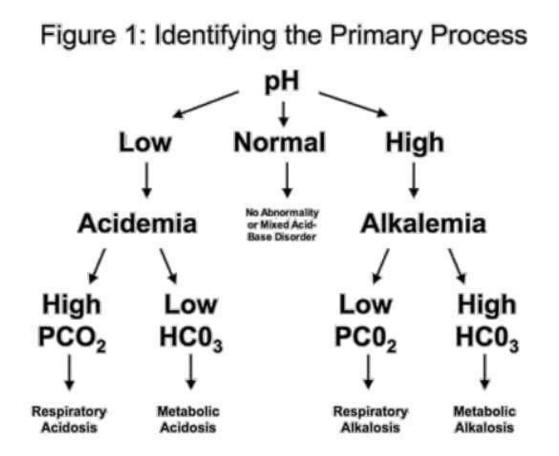
рΗ

- Each solution has pH which affect the characteristic of this solution
- "potential of Hydrogen" or "power of hydrogen"
- the decimal logarithm of the reciprocal of the H+ activity
- pH = log (H+)

Henderson-Hasselbalch equation:

other molecules (CO2, HCO3) CO2 + H2O \Leftrightarrow H2CO3 \Leftrightarrow H + HCO3 pH = HCO3/CO2 of H+ = 24 X CO2/HCO3

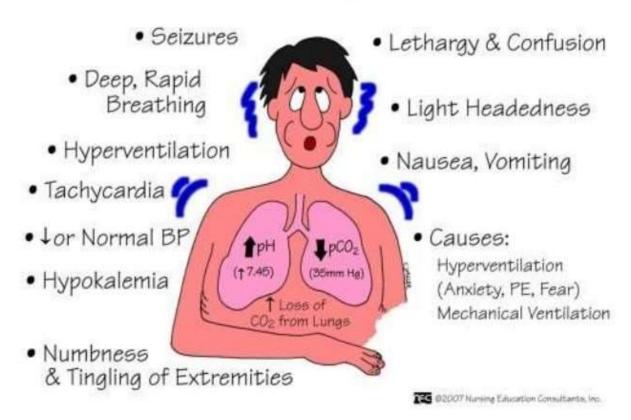
Terminology


- Acid: hydrogen-containing substance that is capable of donating a proton (hydrogen ion) to another substance.
- Base: a molecule or ion able to accept a hydrogen ion from an acid.
- Acidosis: process in crease the amount of proton H+
- Alkalosis: process decrease the amount of proton H+
- Acidemia: the pH of the blood lower than normal < 7.35
- Alkalemia: the pH pf the blood greater than normal > 7.45

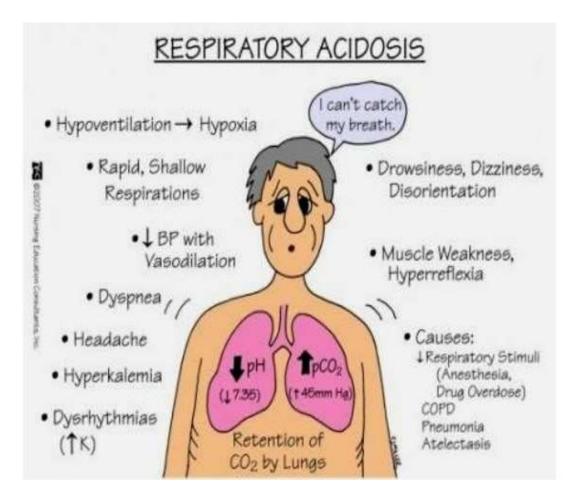
ACID-BASE REGULATION

• Maintenance of an acceptable pH range in the extracellular fluids is accomplished by three mechanisms:

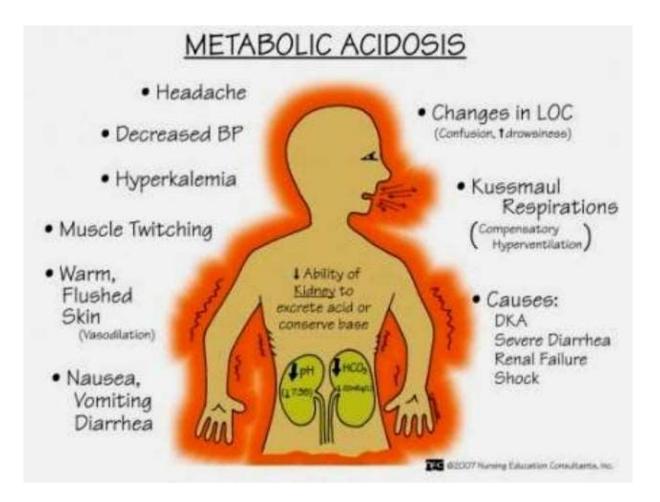
1- Chemical Buffers: Phosphate Buffer Protein Buffer Bicarbonate Buffer System


- React very rapidly (less than a second)
- 2- Respiratory Regulation: Hyperventilation Hypoventilation
- Reacts rapidly (seconds to minutes)
- **3- Renal Regulation:** reabsorption or excretion of filtered (HCO3 -). Formation of titratable acid. Excretion of NH4+ in the urine.
- Reacts slowly (minutes to hours)

Respiratory alkalosis rapid RR


- CNS hyperactivity (pain, fever)
- CNS trauma, CVA, infection
- Hypoxia: increase demand (anemia, hyperthyroidism)
- Hypoxemia: Pneumonia, PE, pulmonary edema
- Liver insufficiency, pregnancy

RESPIRATORY ALKALOSIS


Respiratory acidosis: low RR

- CNS depression (acute stroke, head trauma, narcotic overdose)
- Increase ICP
- Neurological: GBS
- Neuromuscular disease: MG
- Obstructive lung disease: COPD, OSA, foreign body

Metabolic acidosis

- Again, process add proton (lower pH)
- Is this extra proton because we losing HCO3 adding acid
- This lead to Anion gap

Anion gap

- Anion = Cations
- Na + K + unmeasured cations (Mg + Ca + globulin) = Cl + HCO3 + unmeasured anions (PO4 + SO4 + albumin + acid)
- Na (Cl + HCO3) = unmeasured anion unmeasured cation

AGMA

G	Glycols (ethylene and propylene)	
0	5-Oxoproline (pyroglutamic acid) chronic paracetamol use, EtOH, poor nutrition, vegetarian diet, renal failure, infection, flucloxacillin/dicloxacillin/netilmicin, Vigabatrin	
L	Lactate	
D	D-lactic acid Associated with short bowel syndrome	
М	Methanol and other toxins (ethanol, Aldehyde)	
А	Aspirin, salicylates	
R	Renal failure	
К	Ketoacidosis	

EtOH, ethyl alcohol,.

NGMA

Gastrointestinal losses of HCO₃ Diarrhea Enteric fistula Pancreatic fistula Ureteral diversions Uretero-sigmoidostomy lleal bladder lleal ureter Renal tubular acidosis Proximal Distal Buffer deficiency (phosphate, ammonia) Medications Carbonic anhydrase inhibitors (i.e., acetazolamide) Amphotericin B

Urine AG

Na + K − Cl Surrogate for Urine NH4+

NEGATIVE when distal acidification is intact

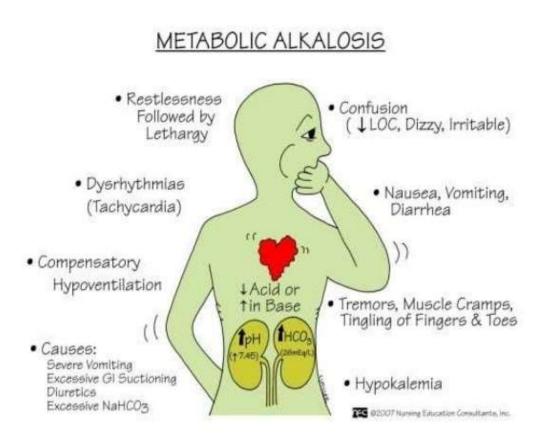
- All GI disturbances
- Proximal RTA

POSITIVE when urinary NH4+ excretion impaired

- Distal RTA
- Type 4 RTA (nb 个K)
- Renal failure

Unreliable: Polyuria, UNa <20

Metabolic alkalosis


• Associated with hypochloremia and hypokalemia

Phases of metabolic alkalosis

- Generation: loss of acid, gain HCO3
- Maintenance stage: kidney loss ability excrete HCO3 and paradoxically absorb HCO3 (volume contraction, low GFR, CL or K depletion, high CO2, secondary aldosteronism)
- Hypokalemia: enhance reabsorption of HCO3, ammoniagenesis (production of HCO3), stimulate H, K ATPase

- Exogenous: milk alkali syndrome
- Effective EVF contraction:
- Extra renal:
- > **Vomiting** (Cl loss and Na, HCO3 retention, volume contraction)
- > Chloride loosing diarrhea (normal Na/H and loss of Cl/HCO3 exchanger)
- Villous adenoma (volume contraction and hypokalemia)
- <u>Renal</u>:
- > Diuretics, AR disorders like G and BS (Hypokalemia and volume contraction)
- Post hypercaphic: in volume contraction (Chloride loss)
- > Non absorbable anions: distal acidification and K secretion, Mg deficiency
- *ECF excess*: mineralocorticoid excess
- High renin: tumor, RAS
- Low renin: primary hyperaldosteronism, Liddle syndrome

Clinical approach

- 1- validity
- 2- acidemia or alkalemia
- 3- primary disorders
- 4- compensation
- 5- AG
- 6- delta/delta

• pH = 7.52	$PCO_2 = 26 \text{ mm Hg}$
PO ₂ = 105 mm Hg	$HCO_3 = 21 \text{ m mol} / L$
• BE = - 3	$SaO_2 = 99\%$
 Na⁺ = 138 m mol / L 	K+ = 3.8 m mol / L
 CI⁻ = 104 m mol / L 	Anion Gap = 13

○ pH = 7.3	$PCO_2 = 60 \text{ mm Hg}$
$OPO_2 = 60 \text{ mm Hg}$	$HCO_3 = 26 \text{ m mol} / L$
• BE = + 2	SaO ₂ = 89 %
• Na ⁺ = 140 m mol / L	K+ = 4 m mol / L
 CI⁻ = 100 m mol / L 	

pH = 7.44 $PCO_2 = 29 \text{ mm Hg}$ $PO_2 = 100 \text{ mm Hg}$ $HCO_3 = 19 \text{ m mol / L}$ BE = -5 $SaO_2 = 98 \%$ $Na^+ = 137 \text{ m mol / L}$ $K^+ = 3.7 \text{ m mol / L}$ $CI^- = 108 \text{ m mol / L}$

● pH = 7.32	PCO ₂ = 70 mm Hg
$OPO_2 = 62 \text{ mm Hg}$	$HCO_3 = 32 \text{ m mol} / L$
• BE = +8	SaO ₂ = 90 %
• Na ⁺ = 136 m mol / L	$K^{+} = 3.5 \text{ m mol} / L$
O Cl - = 96 m mol / L	

$PCO_2 = 30 \text{ mm Hg}$
$HCO_3 = 10 \text{ mmol} / L$
SaO ₂ = 95 %
K+ = 4.1 m mol / L
Anion Gap = 29

 pH = 7.50 PO₂ = 75 mm Hg 	$PCO_2 = 50 \text{ mm Hg}$ $HCO_3 = 40 \text{ mmol} / L$
• BE = + 16	SaO ₂ = 95 %
 Na⁺ = 132 m mol / L Cl⁻ = 88 m mol / L 	$K^+ = 3.1 \text{ m mol} / L$ Anion Gap = 4

o pH	:	7.36
• PCO ₂	:	34 mm Hg
• PO ₂	:	100 mm Hg
O HCO ₃	:	16mmol/L
• BE	:	-8
 Sats 	:	98%
• Na+	:	140mmol/L
• K+	1	3.5mmol/L
o Cl-	:	98mmol/L
• Anion C	Sap :	26

o pH	14	7.55
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
PCO ₂		30 mm Hg
 PO2 	1	104 mm Hg
O HCO ₃	:	29mmol/L
• BE	:	+5
 Sats 	:	99%
 Na+ 	1	135mmol/L
• K+	:	3.5mmol/L
o Cl-	1	95mmol/L
Anion Gap:		11

o pH	:	7.40
• PCO ₂	:	28 mm Hg
• PO ₂	1	60 mm Hg
• HCO ₃	:	15mmol/L
• BE	:	-9mmol/L
 Sats 	:	90%
o Na+	:	140mmol/L
• K+	:	3.5mmol/L
OCI-	:	98mmol/L
• Anion Gap :		27