# EMERGENCIES AND SEPSIS

Abedurahman Sharif, MD

Hashemite University School of medicine Department of pediatrics

## Anaphylaxis

#### **Definition**:

- Rapid-onset (minutes to hours) usually immunoglobulin E (IgE)-mediated systemic allergic reaction involving multiple organ systems, including two or more of the following:
- 1. <u>Cutaneous/mucosal</u> (80% to 90%): flushing, urticaria, pruritis, angioedema
- Respiratory (70%): laryngeal edema, bronchospasm, dyspnea, wheezing, stridor, hypoxemia
- 3. **Gastrointestinal** (45%): vomiting, diarrhea, nausea, crampy abdominal pain
- Circulatory (45%): tachycardia, hypotension, syncope



## Anaphylaxis

#### Management:

1. **Stop exposure** to precipitating antigen.



- 2. While performing **A-B-Cs**, immediately give intramuscular (IM) epinephrine.
  - For child, administer 0.01 mg/kg of 1 mg/mL solution up to a max dose of 1 mg/dose.
  - Repeat dosing every 5 to 15 minutes as needed.
- 3. Provide **oxygen and ventilatory assistance**. Consider early endotracheal intubation.
- 4. Obtain IV access. For management of shock, resuscitate with 20 mL/kg isotonic crystalloid fluid boluses and vasoactive agents as needed.
- 5. Place patient in **Trendelenburg position** (head 30 degrees below feet).
- 6. Consider adjuvant pharmacologic agents:
  - I. **Histamine receptor antagonist:** Diphenhydramine or chlorphenaramine **(H1-antagonism**) and ranitidine/famotidine (**H2-antagonism**)
  - II. **Corticosteroid:** Methylprednisolone or dexamethasone
  - III. Inhaled β2 agonist: Albuterol.

### Remember

### Anaphylaxis kills...



#### First line treatment is IM adrenaline

# **NOT** salbutamol or antihistamines

## Anaphylaxis

- Symptoms may recur ("biphasic anaphylaxis") up to 72 hours after initial recovery.
  - Observe for a minimum of 4 to 10 hours for late-phase symptoms.
  - Discharge with an epinephrine autoinjector and an anaphylaxis action plan.



## **Epiglottitis**

#### **Definition**:

- Life-threatening, rapidly progressive inflammation (usually infectious) of the supraglottic region.
- May be caused by infection, thermal injury, caustic ingestion, or foreign body.
- Most common infectious organisms include *Haemophilus influenzae* (unvaccinated), *Streptococcus pneumoniae*, group A streptococci, and *Staphylococcus aureus*.
- Patients often present febrile, toxic-appearing, and tripoding in respiratory distress (Dyspnea).
   Drooling, Dysphagia and inspiratory stridor (with Dysphonia) are common. Barky cough is absent.





## **Epiglottitis**

### Management:


- 1. Avoid *any agitation* of the child prior to securing airway to prevent impending complete obstruction.
- 2. Allow a **position of comfort**. Provide **oxygen**. Monitor with **pulse oximetry**.
- 3. Initiate broad-spectrum antibiotic therapy (e.g., vancomycin and Ceftriaxone).

## **Epiglottitis**

#### Management:

# 4. To secure airway, emergently consult difficult airway personnel.

- 1. If **unstable** (unresponsive, cyanotic, bradycardic), **emergently intubate**.
- 2. If stable with high suspicion, send patient to Operation Room for laryngoscopy and intubation under general anesthesia.
- If stable with moderate or low suspicion, obtain lateral neck radiograph to assess for "thumb sign".



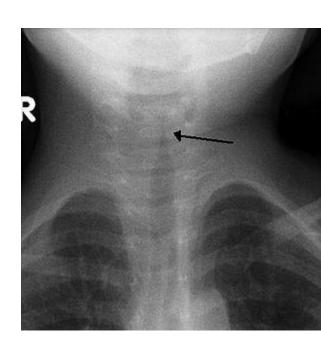


#### **Definition**:

- Common infectious inflammation of the subglottic area.
- Most common in infants aged 6 to 36 months.
- 75% of infections are caused by **parainfluenza virus**.
- Patients present with fever, <u>barking cough</u>, inspiratory <u>stridor</u>, and increased work of breathing, often worse at night.

## Croup

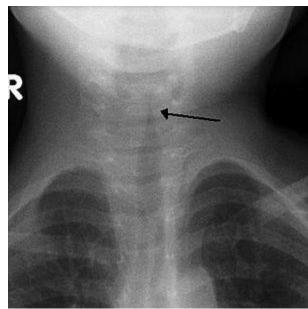
#### Management:


 oxygen to children with hypoxemia or severe respiratory distress. Use humidified air, although current consensus suggests it is ineffective for mild to moderate disease.

#### A. If no stridor at rest,

- 1. give single dose **dexamethasone (IM or PO)**.
- 2. **nebulized budesonide** in patients vomiting or who lack IV access.

#### B. If stridor at rest,


- 1. give dexamethasone and nebulized racemic epinephrine.
- 2. **Observe for 2 to 4 hours** given short duration of action of nebulized epinephrine.



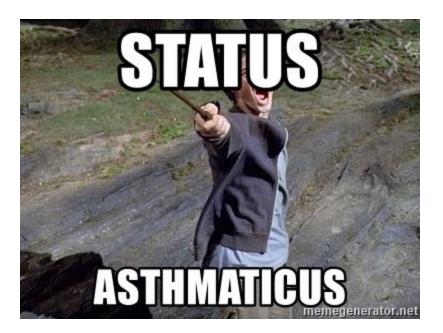
## Croup

#### Management

- Indications for hospitalization include
  - 1. >1 racemic epinephrine nebulization required,
  - 2. atypical age (<6 months),
  - 3. severe respiratory distress,
  - 4. dehydration.



• Heliox (helium and oxygen mixture) to improve turbulent airflow in moderate to severe croup, although benefit is controversial.


## **Status Asthmaticus**

#### **Definition**:

It is the acute and sub-acute worsening in symptoms and lung function from the patient's usual status for an asthmatic patients.

#### **Examination**:

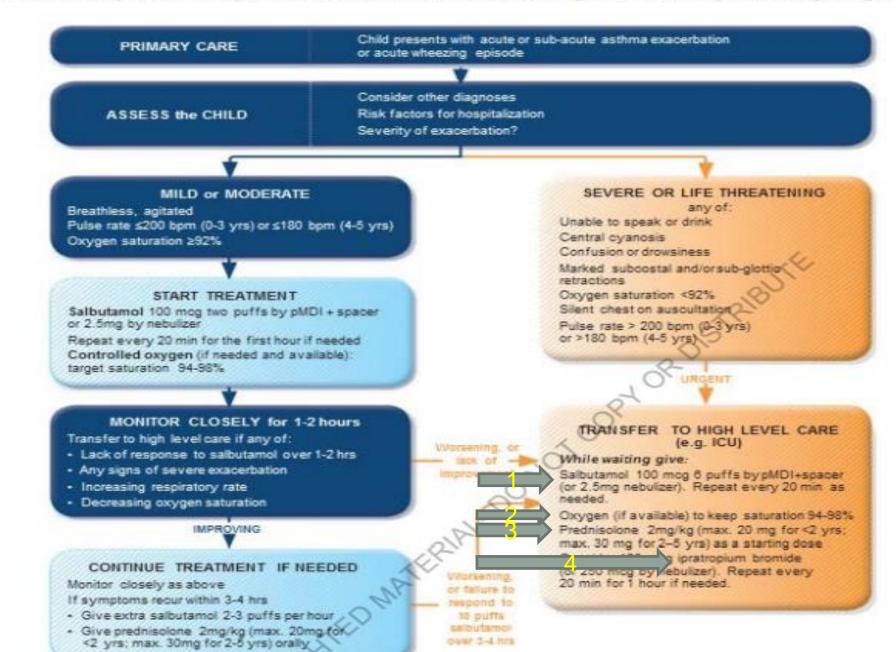
- Assess breathlessness,
- speech,
- alertness,
- respiratory rate,
- accessory muscle use,
- wheezing,
- HR,
- pulsus paradoxus,
- peak expiratory flow,
- SpO2 and pCO2.



### **Status Asthmaticus**

Box 6-9. Initial assessment of acute asthma exacerbations in children 5 years and younger

| Symptoms                                      | Mild              | Severe                        |
|-----------------------------------------------|-------------------|-------------------------------|
| Altered consciousness                         | No                | Agitated, confused or drowsy  |
| Oximetry on presentation (SaO <sub>2</sub> )" | >95%              | <92%                          |
| Speecht                                       | Sentences         | Words                         |
| Pulse rate                                    | <100 beats/minute | >200 beats/minute (0–3 years) |
|                                               |                   | >180 beats/minute (4–5 years) |
| Central cyanosis                              | Absent            | Likely to be present          |
| Wheeze intensity                              | Variable          | Chest may be quiet            |


\*Any of these features indicates a severe asthma exacerbation. \*\*Oximetry before treatment with oxygen or bronchodilator. <sup>†</sup> The normal developmental capability of the child must be taken into account.

Blood gas is important test to assess the severity of asthma exacerbation

### **Status Asthmaticus**

#### Management:

- Provide oxygen to achieve SpO2 ≥90%. If hypoxemia not readily corrected with supplemental oxygen, consider other complications.
- Pharmacologic agents used in acute asthma exacerbations.
- Ventilation interventions:
  - Normalizing pCO2 can be a sign of impending respiratory failure.
  - NIPPV (e.g., BiPAP) may be used in patients with impending respiratory failure to avoid intubation.
  - Intubation should be approached cautiously. The Indications include:
    - 1. severe airway obstruction,
    - 2. markedly increased work of breathing,
    - 3. refractory hypoxemia,
    - 4. impending respiratory arrest.
  - Consider inhaled anesthetics or ECMO as rescue therapies.



#### Box 6-8. Primary care management of acute asthma or wheezing in children 5 years and younger

#### STATUS ASTHMATICUS MEDICATIONS24-28

| Medication                         | Dose                                                                                                                                                                                                                                                   | Comments                                                                                                                                                                                    |
|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Short-acting $\beta_2$ agonist     | t                                                                                                                                                                                                                                                      |                                                                                                                                                                                             |
| Albuterol                          | Mild to Moderate: Administer up<br>to 3 doses in the first hour<br>MDI: 4—8 puffs (90 mCg/puff) q20<br>min—4 hr<br>Nebulizer: 0.15 mg/kg (min 2.5<br>mg, max 5 mg) q20 min—4 hr<br>Severe: Continuous nebulization:<br>0.5 mg/kg/hr (max 30 mg/hr)     | Inhaler (with spacer) is preferred<br>delivery method given equal<br>or greater efficacy, fewer side<br>effects, and shorter length<br>of stay                                              |
| Anticholinergics                   |                                                                                                                                                                                                                                                        |                                                                                                                                                                                             |
| Ipratropium bromide                | Administer q20 min for 3 doses<br>with albuterol<br>MDI: 4–8 puffs (17 mCg/puff)<br>Nebulizer: 0.25–0.5 mg                                                                                                                                             | No additional benefit shown in<br>inpatient setting                                                                                                                                         |
| Systemic corticosteroi             | ds                                                                                                                                                                                                                                                     |                                                                                                                                                                                             |
| Dexamethasone                      | Mild to Moderate: 0.6 mg/kg/day<br>PO/IV/IM for 1—2 days (max 16<br>mg/day)                                                                                                                                                                            | Equally as efficacious as<br>prednisone or prednisolone<br>with fewer side effects, better<br>compliance and palatability                                                                   |
| Prednisone,                        | Mild to Severe: 2 mg/kg/day PO                                                                                                                                                                                                                         | Taper if course ≥7 days or bounce                                                                                                                                                           |
| Prednisolone<br>Methylprednisolone | for 5–7 days (max 60 mg/day)<br>Severe:<br>Loading: 2 mg/kg IV (max 60 mg)<br>Maintenance: 2 mg/kg/day IV<br>divided q6–12hr (max <12<br>years 60 mg/day, ≥12 years 80<br>mg/day)                                                                      | back from recent exacerbation<br>No known advantage in severe<br>exacerbations for higher dosing<br>or IV administration over oral<br>therapy, provided normal GI<br>transit and absorption |
| Injected β <sub>2</sub> agonist    |                                                                                                                                                                                                                                                        |                                                                                                                                                                                             |
| Epinephrine                        | 0.01 mg/kg of 1 mg/mL IM (max<br>1 mg) q15—20 min for up to<br>3 doses                                                                                                                                                                                 | Consider for severe exacerbation<br>with minimal air entry<br>Consider quickly accessed<br>a utoinjector                                                                                    |
| Terbutaline                        | <ul> <li>SC: 0.01 mg/kg (max 0.25 mg/<br/>dose) q20 min for up to 3 doses,<br/>then as needed q2-6 hr</li> <li>IV load: 2-10 mCg/kg IV</li> <li>IV continuous: 0.1-0.4 mCg/kg/<br/>min (doses as high as 10 mCg/<br/>kg/min have been used)</li> </ul> | Consider for severe exacerbation<br>with minimal air entry<br>IV administration may decrease<br>the need for mechanical<br>ventilation                                                      |
| Adjunct therapies                  |                                                                                                                                                                                                                                                        |                                                                                                                                                                                             |
| Magnesium sulfate                  | 25—75 mg/kg/doseIV (max 2 g),<br>infuse over 20 min                                                                                                                                                                                                    | Smooth muscle relaxant<br>May cause hypotension; consider<br>simultaneous fluid bolus<br>Reduces hospitalization rates in<br>severe exacerbations                                           |
|                                    |                                                                                                                                                                                                                                                        |                                                                                                                                                                                             |

| Medication                                                              | Dose                                                                                                      | Comments                                                                                                                                                                                                                                                             |
|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ketamine                                                                | 1–2 mg/kg IV bolus followed by<br>1 mg/kg/h infusion, titrated<br>to affect                               | Used as a sympathomimetic<br>adjuvant in effort to avoid<br>endotracheal intubation<br>Preferred induction-sedative<br>agent for endotracheal<br>intubation in asthma                                                                                                |
| Aminophylline                                                           | 6 mg/kg IV bolus over 20 min<br>followed by 0.5–1.2 mg/kg/h<br>infusion (age-dependent, see<br>formulary) | Use limited to severe<br>exacerbations refractory to<br>traditional interventions<br>May improve lung function<br>and oxygen saturation but is<br>associated with greater length<br>of stay and time to symptom<br>improvement                                       |
| Heliox                                                                  | Optimal helium-oxygen ratio<br>unknown, most commonly 70:30<br>or 80:20 mixture                           | Low density gas that promotes<br>laminar airflow and improves<br>β <sub>2</sub> agonist delivery to distal<br>airways<br>Useful in severe or very severe<br>exacerbations                                                                                            |
| Inhaled anesthetics<br>(e.g., halothane,<br>isoflurane,<br>sevoflurane) | Consultation with pediatric<br>anesthetist recommended                                                    | Rescue therapy for intubated<br>patients with life-threatening<br>exacerbation<br>Associated with prolonged length<br>of stay and increased cost<br>Isoflurane may cause hypotension<br>Sevoflurane may cause renal<br>tubular injury, hepatotoxicity,<br>neuropathy |

#### **Definition**:

- Prolonged seizure (clinical or electrographic) or recurrent seizure activity without return to baseline lasting 5 minutes or more.
  - A. Common <u>acute</u> etiologies: febrile seizures, metabolic disturbances, sepsis, head trauma, stroke/hemorrhage, drug toxicity, inadequate antiepileptic therapy, hypoxia, hypertensive encephalopathy, autoimmune encephalitis
  - B. Common <u>chronic</u> etiologies: preexisting epilepsy, tumor, stroke, inborn error of metabolism, ethanol abuse

#### STATUS EPILEPTICUS TREATMENT GUIDELINE<sup>33-34</sup>

IMMEDIATE APPROACH (0-5 min)

Management:

Protect airway, intubate if needed

Assess vitals

Bedside fingerstick blood glucose

Establish peripheral IV access: administer emergent AED, fluid resuscitation, nutrient resuscitation (thiamine, dextrose)

Labs: Jaboratory blood glucose CBC\_BMP calcium magnesium antiseizure medication drug levels

| Medication           | Dose                                                                                  | Comment                                              |
|----------------------|---------------------------------------------------------------------------------------|------------------------------------------------------|
| Diazepam<br>(Valium) | 0.15–0.5 mg/kg IV (max 10 mg/dose)<br>2–5 years: 0.5 mg/kg PR (max 20 mg/dose)        | Monitor for hypotension, respira-<br>tory depression |
|                      | 6-11 years: 0.3 mg/kg PR (max 20 mg/dose)<br>≥12 years: 0.2 mg/kg PR (max 20 mg/dose) | Call be repeated 5                                   |
|                      | May repeat dose once in 5 min                                                         | times 5 minutes apart                                |
| Lorazepam            | 0.1 mg/kg IV (max 4 mg/dose)                                                          | Monitor for hypotension, respira-                    |
| (Ativan)             | May repeat dose once in 5–10 min                                                      | tory depression                                      |
| Midazolam            | 0.2 mg/kg IM/IN                                                                       | Monitor for hypotension, respira-                    |
| (Versed)             | 0.5 mg/kg buccal                                                                      | tory depression                                      |
|                      | Max: 10 mg all forms                                                                  |                                                      |
|                      | Single dose recommended                                                               |                                                      |
|                      | 0.0 000 000000000                                                                     |                                                      |

ABCs

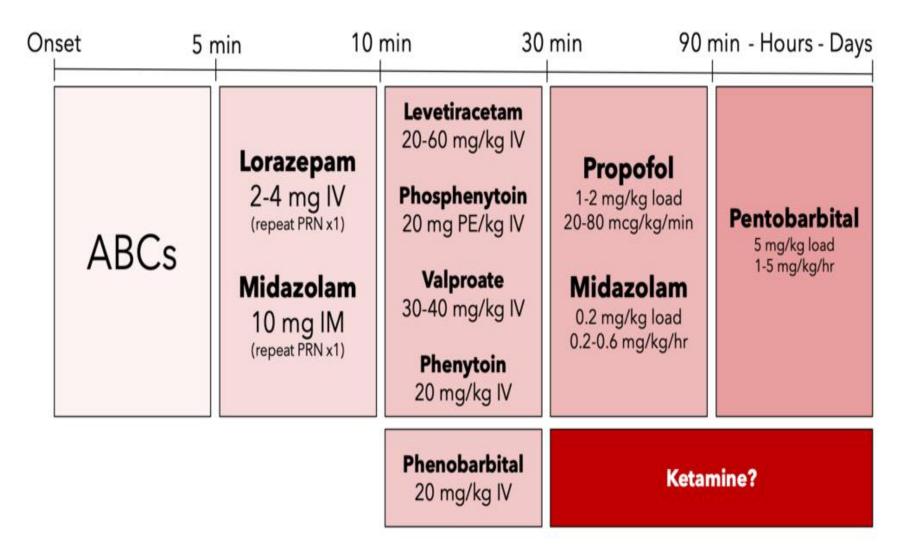
Put in left lateral position

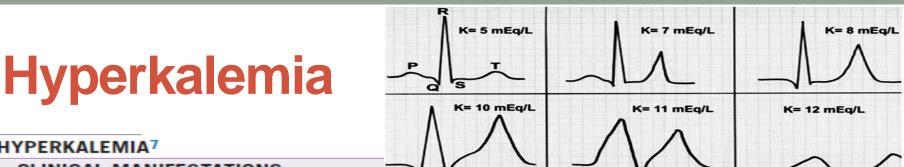
URGENT APPROACH (5-15 min)

Management: Secondary AED control therapy Initiate vasopressor support if indicated Neurological examination CT if indicated Labs: Liver function tests, coagulation studies, toxicology screen, inborn error of metabolism screening Neurologic consultation Comment Medication Dose 20 mg PE/kg IV/IM (max 1500 mg PE/24 hr) Fosphenytoin Monitor for arrhythmia, May give additional 5 mg PE/kg repeat dose hypotension Levetiracetam 20-60 mg/kg IV (max 4500 mg/dose) Minimal drug interactions (Keppra) Not hepatically metabolized Monitor for arrhythmia, hypoten-Phenytoin 20 mg/kg IV (max 1500 mg/24 hr) May give additional 5–10 mg/kg repeat dose sion, purple glove syndrome Phenobarbital 15-20 mg/kg IV (max 1000 mg) Monitor for hypotension, respira-May give additional 5–10 mg/kg repeat dose tory depression Use with caution in TBI Valproic Acid 20-40 mg/kg IV May give additional 20 mg/kg repeat dose Monitor for hyperammonemia, (max 3000 mg/dose) pancreatitis, hepatotoxicity, thrombocytopenia

REFRACTORY APPROACH (15-60 min)

| Management:<br>Refractory AED control therapy<br>Continuous EEG monitoring if indicated<br>MRI if indicated<br>Lumbar puncture if indicated<br>Consider broad-spectrum antibiotics and antivirals if indicated<br>Intracranial pressure monitoring if indicated<br>Urinary catheter |                                                                                   |                                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| Medication                                                                                                                                                                                                                                                                          | Dose                                                                              | Comment                                                                                    |
| Midazolam<br>(continuous<br>infusion)                                                                                                                                                                                                                                               | Load: 0.2 mg/kg<br>Infusion: 0.05–2 mg/kg/hr<br>Breakthrough: 0.1–0.2 mg/kg bolus | Tachyphylaxis with prolonged use<br>Monitor for respiratory depres-<br>sion, hypotension   |
| Pentobarbital                                                                                                                                                                                                                                                                       | Load: 5–15 mg/kg<br>Infusion: 0.5–5 mg/kg/hr<br>Breakthrough: 5 mg/kg bolus       | Monitor for hypotension,<br>respiratory depression, cardiac<br>depression, paralytic ileus |
| Propofol                                                                                                                                                                                                                                                                            | Load: 1–2 mg/kg                                                                   | Monitor for hypotension,                                                                   |


Infusion: 20-65 mCg/kg/min


Breakthrough: 1 mg/kg bolus

respiratory depression, cardiac

failure, rhabdomyolysis, metabolic acidosis, renal failure, hypertriglyceridemia, pancreatitis (propofol related

infusion syndrome)

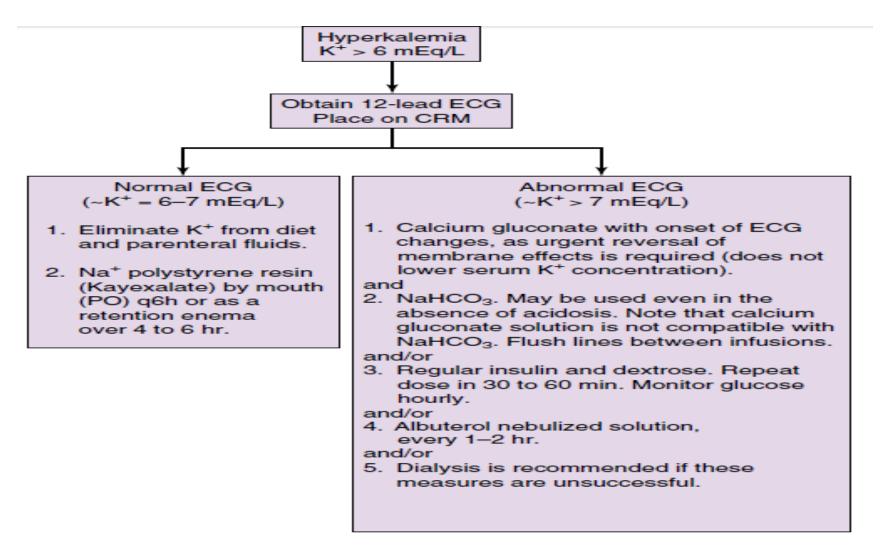




23

#### HYPERKALEMIA7

#### CLINICAL MANIFESTATIONS


Skeletal muscle weakness, fasciculations, paresthesias, and ascending paralysis. The typical ECG progression with increasing serum K<sup>+</sup> values:

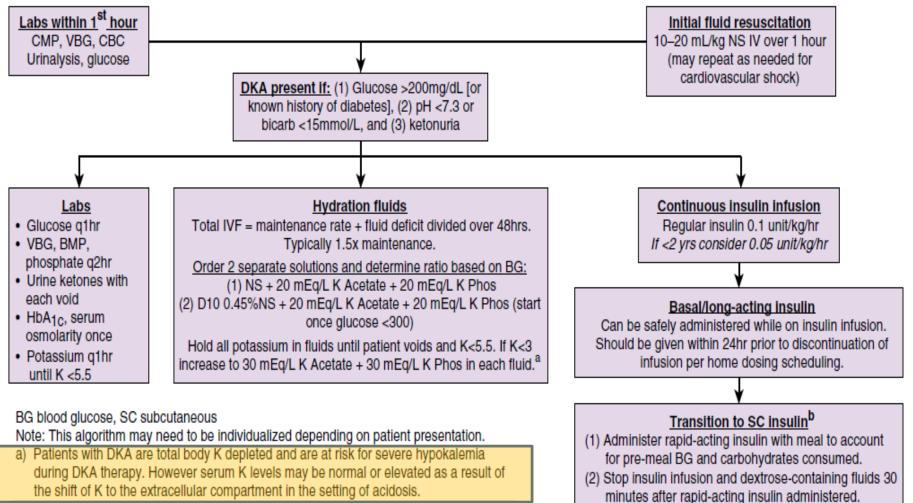
- Peaked T waves 1
- 2. Prolonged PR and widening of QRS
- 3 Loss of P waves
- ST segment depression with further widening of QRS 4
- Bradycardia, atrioventricular (AV) block, ventricular arrhythmias, torsades de pointes, and 5. cardiac arrest

#### ETIOLOGIES

| Increa                                                                         | Intracellular shifts (no                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                     |  |
|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Increased urine K <sup>+</sup>                                                 | Decreased urine K <sup>+</sup>                                                                                                                                                                                                                                                                                                              | change in total body K <sup>+</sup> )                                                                                                                                                                                                                                                               |  |
| Transfusion with<br>aged blood<br>Exogenous K <sup>+</sup><br>Spitzer syndrome | Renal failure<br>Hypoaldosteronism<br>Aldosterone insensitivity<br>I Insulin causing hyperglycemia and/or DKA<br>K <sup>+</sup> -sparing diuretics<br>Congenital adrenal hyperplasia<br>Type IV RTA<br>Meds: ACE inhibitors, angiotensin II blockers,<br>K sparing diuretics, calcineurin inhibitors,<br>NSAIDs, heparin, TMX, drospirenone | Tumor lysis syndrome<br>Leukocytosis (>200 x<br>10 <sup>3</sup> /μL)<br>Thrombocytosis (>750 x<br>10 <sup>3</sup> /μL) <sup>b</sup><br>Metabolic acidosis <sup>a</sup><br>Blood drawing (hemolyzed<br>sample)<br>Rhabdomyolysis/crush injury<br>Malignant hyperthermia<br>Theophylline intoxication |  |

## Hyperkalemia




## Diabetic ketoacidosis (DKA)

#### **Definition**:

Hyperglycemia (>200 mg/dL) with ketonemia, ketonuria, and metabolic acidosis (pH <7.30, bicarbonate <15 mEq/L)

- Blood Glucose reflects hydration status while pH reflects DKA severity
- Symptoms: Nausea, emesis, abdominal pain, fruity breath, altered mental status, Kussmaul respirations
- Precipitating factors: New-onset DM, known diabetes with missed insulin doses, insulin pump/infusion site malfunction, or physiologic stress due to acute illness.

## **Diabetic ketoacidosis (DKA)**



b) Appropriate to transition to SC insulin once pH >7.3, normal anion gap, normal physical exam, and patient ready to eat.

## Diabetic ketoacidosis (DKA)

#### Management:

- Initial insulin administration may cause transient worsening of the acidosis as K+ is driven into cells in exchange for H+ ions.
- Cerebral edema: Most severe complication of DKA. Overly aggressive hydration and rapid correction of hyperglycemia may play a role in its development. Risk factors include
  - 1. severe acidosis,
  - 2. evidence of renal insufficiency,
  - 3. young age and new onset,
  - 4. use of bicarbonate
  - 5. early use of insuline (in the 1<sup>st</sup> hour).
- Management of cerebral edema is manitol.



# **SEPSIS**

### **Definitions**

- The systemic inflammatory response syndrome (SIRS) is an inflammatory cascade that is initiated by the host response to an infectious or noninfectious trigger. In neonates and pediatric patients, SIRS manifests as:
  - 1. temperature instability,
  - 2. respiratory dysfunction (altered gas exchange, hypoxemia, acute respiratory distress syndrome),
  - 3. cardiac dysfunction (tachycardia, delayed capillary refill, hypotension),
  - 4. perfusion abnormalities (oliguria, metabolic acidosis, decreased level of consciousness).
- Sepsis is defined as SIRS resulting from a <u>suspected or proven infectious</u> etiology.
- Severe sepsis (the presence of sepsis combined with organ dysfunction).
- Septic shock (severe sepsis plus the persistence of hypoperfusion or hypotension despite adequate fluid resuscitation or a requirement for vasoactive agents), that leads to multi-organ dysfunction syndrome (MODS), and possibly death.

| Table 70         | 0-7 International Consensus Definitions for Pediatric Sepsis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Infection        | Suspected or proven infection or a clinical syndrome associated with high probability of infection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| SIRS             | <ul> <li>Two of 4 criteria, 1 of which must be abnormal temperature or abnormal leukocyte count:</li> <li>1. Core temperature &gt;38.5°C (101.3°F) or &lt;36°C (96.8°F) (rectal, bladder, oral, or central catheter)</li> <li>2. Tachycardia: <ul> <li>Mean heart rate &gt;2 SD above normal for age in absence of external stimuli, chronic drugs or painful stimuli or</li> <li>Unexplained persistent elevation over 0.5-4 hr</li> <li>or</li> <li>In children &lt;1 yr old, persistent bradycardia over 0.5 hr (mean heart rate &lt;10th percentile for age in absence of vagal stimuli, β-blocker drugs, or congenital heart disease)</li> </ul> </li> <li>3. Respiratory rate &gt;2 SD above normal for age or acute need for mechanical ventilation not related to neuromuscular disease or general anesthesia</li> <li>4. Leukocyte count elevated or depressed for age (not secondary to chemotherapy) or &gt;10% immature neutrophils</li> </ul>                                                                              |
| Sepsis           | SIRS plus a suspected or proven infection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Severe<br>sepsis | <ul> <li>Despite &gt;40 mL/kg of isotonic intravenous fluid in 1 hr:         <ul> <li>Hypotension &lt;5th percentile for age or systolic blood pressure &lt;2 SD below normal for age or</li> <li>Need for vasoactive drug to maintain blood pressure</li> </ul> </li> <li>Need for vasoactive drug to maintain blood pressure</li> <li>or</li> <li>2 of the following:         <ul> <li>Unexplained metabolic acidosis: base deficit &gt;5 mEq/L</li> <li>Increased arterial lactate: &gt;2 times upper limit of normal</li> <li>Oliguria: urine output &lt;0.5 mL/kg/hr</li> <li>Prolonged capillary refill: &gt;5 sec</li> <li>Core to peripheral temperature gap &gt;3°C (5.4°F)</li> </ul> </li> <li>ARDS as defined by the presence of a Pao<sub>2</sub>/FiO<sub>2</sub> ratio ≤300 mm Hg, bilateral infiltrates on chest radiograph, and no evidence of left heart failure         <ul> <li>or</li> <li>sepsis plus 2 or more organ dysfunctions (respiratory renal, neurologic, hematologic, or hepatic)</li> </ul> </li> </ul> |
| Septic<br>shock  | Sepsis plus cardiovascular organ dysfunction as defined above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| MODS             | Presence of altered organ function such that homeostasis cannot be maintained without medical intervention                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| Table 70-8         Goal-Directed Therapy of Organ System Dysfunction in Shock |                                                                                       |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SYSTEM                                                                        | DISORDERS                                                                             | GOALS                                                                                                                                                            | THERAPIES                                                                                                                                                                                                                                                                                      |
| Respiratory                                                                   | Acute respiratory distress<br>syndrome<br>Respiratory muscle fatigue<br>Central apnea | Prevent/treat: hypoxia and<br>respiratory acidosis<br>Prevent barotrauma<br>Decrease work of breathing                                                           | Oxygen<br>Noninvasive ventilation<br>Early endotracheal intubation and mechanical<br>ventilation<br>Positive end-expiratory pressure (PEEP)<br>Permissive hypercapnia<br>High-frequency ventilation<br>Extracorporeal membrane oxygenation (ECMO)                                              |
| Renal                                                                         | Prerenal failure<br>Renal failure                                                     | Prevent/treat: hypovolemia,<br>hypervolemia, hyperkalemia,<br>metabolic acidosis, hypernatremia/<br>hyponatremia, and hypertension<br>Monitor serum electrolytes | Judicious fluid resuscitation<br>Establishment of normal urine output and blood<br>pressure for age<br>Furosemide (Lasix)<br>Dialysis, ultrafiltration, hemofiltration                                                                                                                         |
| Hematologic                                                                   | Coagulopathy (disseminated<br>intravascular coagulation)<br>Thrombosis                | Prevent/treat: bleeding<br>Prevent/treat: abnormal clotting                                                                                                      | Vitamin K<br>Fresh-frozen plasma<br>Platelets<br>Heparinization                                                                                                                                                                                                                                |
| Gastrointestina                                                               | Stress ulcers<br>Ileus<br>Bacterial translocation                                     | Prevent/treat: gastric bleeding<br>Avoid aspiration, abdominal<br>distention<br>Avoid mucosal atrophy                                                            | Histamine H <sub>2</sub> -receptor–blocking agents or proton<br>pump inhibitors<br>Nasogastric tube<br>Early enteral feedings                                                                                                                                                                  |
| Endocrine                                                                     | Adrenal insufficiency, primary or<br>secondary to chronic steroid<br>therapy          | Prevent/treat: adrenal crisis                                                                                                                                    | Stress-dose steroids in patients previously given<br>steroids<br>Physiologic dose for presumed primary insufficiency<br>in sepsis                                                                                                                                                              |
| Metabolic                                                                     | Metabolic acidosis                                                                    | Correct etiology<br>Normalize pH                                                                                                                                 | Treatment of hypovolemia (fluids), poor cardiac<br>function (fluids, inotropic agents)<br>Improvement of renal acid excretion<br>Low-dose (0.5-2.0 mEq/kg) sodium bicarbonate if<br>the patient is not showing response, pH <7.1, and<br>ventilation (CO <sub>2</sub> elimination) is adequate |

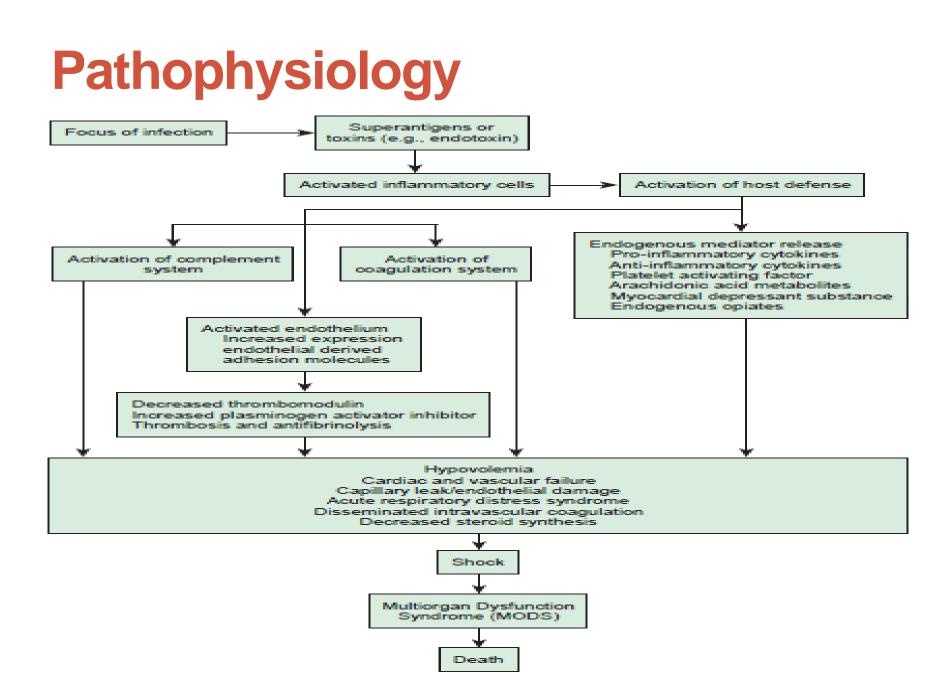
#### Cold Shock vs. Warm Shock

## Pathophysiology



Etiology: Decreased Stroke Volume Impairment: Preload, Afterload, & Contractility

Etiology: Decreased Vascular Tone(SVR) Pulse pressure: Wide


- The initial signs and symptoms of sepsis include alterations in temperature regulation (hyperthermia or hypothermia), tachycardia, and tachypnea.
  - 1. Warm shock in the early stages (hyperdynamic phase, low SVR), cardiac output increases in an attempt to maintain adequate oxygen delivery and meet the greater metabolic demands of the organs and tissues.
  - 2. Cold shock as septic shock progresses, cardiac output falls in response to the effects of numerous inflammatory mediators, leading to a compensatory elevation in SVR.

|                          | Warm Shock                  | Cold Shock              |
|--------------------------|-----------------------------|-------------------------|
| Pulse pressure           | Wide (≥30 mm Hg)            | Narrow (<30 mm Hg)      |
| Diastolic blood pressure | Decreased                   | Normal or Increased     |
| Distal pulses            | Bounding                    | Absent or Weak          |
| Capillary refill         | "Flash" or $\leq 2$ seconds | "Delayed" or >2 seconds |
| Extremity temperature    | Warm                        | Cool                    |

doi:10.1371/journal.pone.0033355.t001

## Pathophysiology

- Septic shock is often a unique combination of:
  - 1. **Distributive shock** is the result of decreased SVR and is **the primary mechanism**.
  - 2. Hypovolemic shock from intravascular fluid losses occurs through capillary leak.
  - 3. Cardiogenic shock results from the myocardial-depressant effects of sepsis.



### Pathophysiology



## **Clinical Signs of Bacterial Sepsis**

| Table 109-5                                                             | Initial Signs and Symptoms of Infection in<br>Newborn Infants |                                                                                               |
|-------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| GENERAL<br>Fever, temperate<br>"Not doing well<br>Poor feeding<br>Edema |                                                               | CARDIOVASCULAR SYSTEM<br>Pallor; mottling; cold, clammy<br>skin<br>Tachycardia<br>Hypotension |
| GASTROINTESTINAL SYSTEM                                                 |                                                               | Bradycardia                                                                                   |

Abdominal distention Vomitina Diarrhea Hepatomegaly

#### RESPIRATORY SYSTEM Apnea, dyspnea Tachypnea, retractions Flaring, grunting Cyanosis

RENAL SYSTEM Oliguria

#### ASCULAR SYSTEM

#### CENTRAL NERVOUS SYSTEM Irritability, lethargy Tremors, seizures Hyporeflexia, hypotonia Abnormal Moro reflex Irregular respirations Full fontanel

High-pitched cry

#### HEMATOLOGIC SYSTEM

Jaundice Splenomegaly Pallor Petechiae, purpura Bleeding

## DIAGNOSIS

• Shock is a clinical diagnosis based on a thorough history and physical examination.

• The vital sign targets adjusted to pediatric-size patients.

| Table 70-3         Signs of Decreased Perfusion |                                              |                                      |                                                        |  |  |  |  |
|-------------------------------------------------|----------------------------------------------|--------------------------------------|--------------------------------------------------------|--|--|--|--|
| ORGAN SYSTEM                                    | ↓ PERFUSION                                  | ↓↓ PERFUSION                         | ↓↓↓ PERFUSION                                          |  |  |  |  |
| Central nervous system                          | _                                            | Restless, apathetic, anxious         | Agitated/confused, stuporous, coma                     |  |  |  |  |
| Respiration                                     | _                                            | ↑ Ventilation                        | ↑↑ Ventilation                                         |  |  |  |  |
| Metabolism                                      | -                                            | Compensated metabolic acidemia       | Uncompensated metabolic acidemia                       |  |  |  |  |
| Gut                                             | _                                            | ↓ Motility                           | lleus                                                  |  |  |  |  |
| Kidney                                          | ↓ Urine volume<br>↑ Urinary specific gravity | Oliguria (<0.5 mL/kg/hr)             | Oliguria/anuria                                        |  |  |  |  |
| Skin                                            | Delayed capillary refill                     | Cool extremities                     | Mottled, cyanotic, cold extremities                    |  |  |  |  |
| Cardiovascular system                           | 1 Heart rate                                 | ↑↑ Heart rate<br>↓ Peripheral pulses | ↑↑ Heart rate<br>↓ Blood pressure, central pulses only |  |  |  |  |

#### Table 109-7 Serious Systemic Illness in Newborns: Differential Diagnosis of Neonatal Sepsis

#### CARDIAC

Congenital: hypoplastic left heart syndrome, other structural disease, persistent pulmonary hypertension of the newborn (PPHN)

Acquired: myocarditis, hypovolemic or cardiogenic shock, PPHN

#### GASTROINTESTINAL

Necrotizing enterocolitis Spontaneous gastrointestinal perforation Structural abnormalities Hepatic failure (inborn errors of metabolism, neonatal iron storage disease)

#### HEMATOLOGIC

Neonatal purpura fulminans Immune-mediated thrombocytopenia Immune-mediated neutropenia Severe anemia Malignancies (congenital leukemia) Langerhans cell histiocytosis Hereditary clotting disorders Familial hemophagocytosis syndrome

#### METABOLIC

Hypoglycemia Adrenal disorders: Adrenal hemorrhage, adrenal insufficiency, congenital adrenal hyperplasia Inborn errors of metabolism: Organic acidurias, lactic acidoses, urea cycle disorders, galactosemia

#### NEUROLOGIC

Intracranial hemorrhage: spontaneous, caused by child abuse Hypoxic-ischemic encephalopathy Neonatal seizures Infant botulism

#### RESPIRATORY

Respiratory distress syndrome Aspiration pneumonia: amniotic fluid, meconium, or gastric contents Lung hypoplasia Tracheoesophageal fistula Transient tachypnea of the newborn

### Septic work up:

- 1. Blood culture
- 2. Lumber pumcture
- 3. Urine analysis and culture
- 4. CBC and differential
- 5. I:T ratio, absolute neutrophil count
- 6. Platelet count
- 7. CRP and procalcitonine (PCT). Other acute phase reactant (IL, TNF)
- 8. CXR

### • To assess severity and end organ damage:

- 1. Lactic acid
- 2. DIC profile: PT, PTT, INR, fibrinogen and FDP.
- 3. Glucose levels.
- 4. Other electrolyte abnormalities are hypocalcemia, hypoalbuminemia, and metabolic acidosis (blood gas).
- 5. Renal and/ or hepatic function

#### **Blood Cultures**



- The gold standard for detection of bacteremia with suspected sepsis is a positive blood culture result (peripheral and central; aerobic and nonaerobic).
- Most blood culture results are detected within 24–48 hours with use of the new technology.
- The use of antibiotics can reduce the ability to detect bacteremia.
- The decision to discontinue treatment with antibiotics should include the assessment of the infant's clinical condition and should not rely solely on a negative blood culture result. When the suspicion of sepsis is high, clinicians should consider continuing Abx.

### Urine Analysis and Cultures

- The frequency of positive urine culture results in infants with early-onset sepsis is relatively low.
- Infants with late-onset sepsis tend to have a higher rate of positive urine culture results.
- In the first 72 hours of life, because the yield from urine cultures is low, it is not generally recommended to obtain urine specimens.
- In the newborn older than 72 hours, a urine sample collected by an aseptic technique (urinary catheter or suprapubic bladder aspiration) is an essential part of the sepsis work-up.



www.shutterstock.com · 14889283

### **Cerebrospinal Fluid analysis and culturs**

- The gold standard for diagnosis of meningitis is the analysis of the CSF, including the WBC count, glucose and protein levels, viral PCR, Latex test, Gram stain, and culture.
- Although an increase is expected in the number of neutrophils with bacterial meningitis, one may see a predominance of lymphocytes within a conversion to PMNs.
- Lumbar punctures are deferred in infants with any instability or uncorrected bleeding disorders.

## **Normal CSF analysis**

|                                       | WBCs<br>(/microL)      | Protein<br>(mg/dL) | Glucose<br>(mg/dL)                             | RBCs |
|---------------------------------------|------------------------|--------------------|------------------------------------------------|------|
| Normal in<br>Children                 | 0 - 5<br>(Lymphocytes) | 20 – 40            | 50 – 100<br>(1/2 - 2/3) of<br>serum<br>glucose | 0    |
| 0-28Normal in(60%NeonatesLymphocytes) |                        | 15-135             | 50 – 100<br>(1/2 - 2/3) of<br>serum<br>glucose | 0    |

#### White Blood Cell Count and Neutrophil Indices

- Normal white blood cell (WBC) counts range from 9000–32,000 cells per microliter at the time of birth.
- The absolute neutrophil count (ANC) and the ratio of immature neutrophils to total neutrophils (I/T) are more useful than total leukocyte counts in the diagnosis of neonatal sepsis.
- The optimal time to obtain WBC counts in neonatal sepsis is after 4 hours of age, and most recommendations are to obtain the first counts at 6–12 hours of age.
- Neutropenia is the best predictor of sepsis, whereas neutrophilia does not correlate well.
- The I/T ratio is considered to have the best sensitivity of all of the neutrophil indices (normal value < 20%).</li>

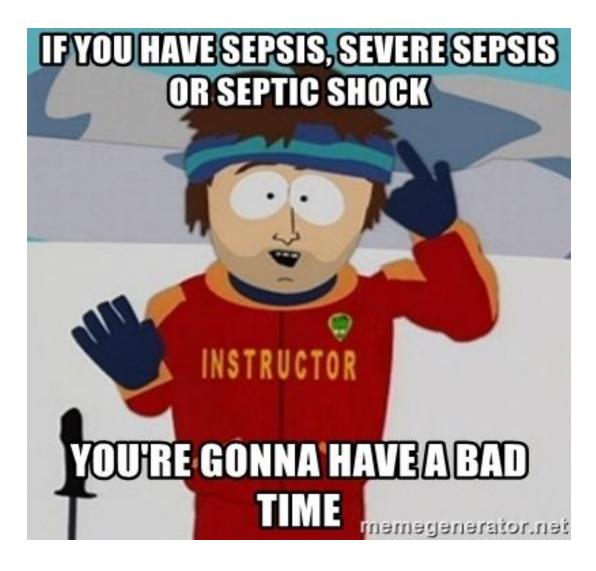
### White Blood Cell Count and Neutrophil Indices

| Table 1. Normal | Blood | Leukocyte | e Counts* |
|-----------------|-------|-----------|-----------|
|-----------------|-------|-----------|-----------|

|       | Total Leukocytes |                | Neutrophils |               | Lymphocytes |      |               | Monocytes |      | Eosinophils |      |    |
|-------|------------------|----------------|-------------|---------------|-------------|------|---------------|-----------|------|-------------|------|----|
| Age   | Mean             | (Range)        | Mean        | (Range)       | %           | Mean | (Range)       | 96        | Mean | %           | Mean | 96 |
| Birth | 18.1             | (9.0 to 30.0)  | 11.0        | (6.0 to 26.0) | 61          | 5.5  | (2.0 to 11.0) | 31        | 1.1  | 6           | 0.4  | 2  |
| 12 h  | 22.8             | (13.0 to 38.0) | 15.5        | (6.0 to 28.0) | 68          | 5.5  | (2.0 to 11.0) | 24        | 1.2  | 5           | 0.5  | 2  |
| 24 h  | 18.9             | (9.4 to 34.0)  | 11.5        | (5.0 to 21.0) | 61          | 5.8  | (2.0 to 11.5) | 31        | 1.1  | 6           | 0.5  | 2  |
| 1 wk  | 12.2             | (5.0 to 21.0)  | 5.5         | (1.5 to 10.0) | 45          | 5.0  | (2.0 to 17.0) | 41        | 1.1  | 9           | 0.5  | 4  |
| 2 wk  | 11.4             | (5.0 to 20.0)  | 4.5         | (1.0 to 9.5)  | 40          | 5.5  | (2.0 to 17.0) | 48        | 1.0  | 9           | 0.4  | 3  |
| 1 mo  | 10.8             | (5.0 to 19.5)  | 3.8         | (1.0 to 9.0)  | 35          | 6.0  | (2.5 to 16.5) | 56        | 0.7  | 7           | 0.3  | 3  |
| 6 mo  | 11.9             | (6.0 to 17.5)  | 3.8         | (1.0 to 8.5)  | 32          | 7.3  | (4.0 to 13.5) | 61        | 0.6  | 5           | 0.3  | 3  |
| 1 y   | 11.4             | (6.0 to 17.5)  | 3.5         | (1.5 to 8.5)  | 31          | 7.0  | (4.0 to 10.5) | 61        | 0.6  | 5           | 0.3  | 3  |
| 2 4   | 10.6             | (6.0 to 17.0)  | 3.5         | (1.5 to 8.5)  | 33          | 6.3  | (3.0 to 9.5)  | 59        | 0.5  | 5           | 0.3  | 3  |
| 4 y   | 9.1              | (5.5 to 15.5)  | 3.8         | (1.5 to 8.5)  | 42          | 4.5  | (2.0 to 8.0)  | 50        | 0.5  | 5           | 0.3  | 3  |
| 6 y   | 8.5              | (5.0 to 14.5)  | 4.3         | (1.5 to 8.0)  | 51          | 3.5  | (1.5 to 7.0)  | 42        | 0.4  | 5           | 0.2  | 3  |
| 8 y   | 8.3              | (4.5 to 13.5)  | 4.4         | (1.5 to 8.0)  | 53          | 3.3  | (1.5 to 6.8)  | 39        | 0.4  | 4           | 0.2  | 2  |
| 10 y  | 8.1              | (4.5 to 13.5)  | 4.4         | (1.8 to 8.0)  | 54          | 3.1  | (1.5 to 6.5)  | 38        | 0.4  | 4           | 0.2  | 2  |
| 16 y  | 7.8              | (4.5 to 13.0)  | 4.4         | (1.8 to 8.0)  | 57          | 2.8  | (1.2 to 5.2)  | 35        | 0.4  | 5           | 0.2  | 3  |
| 21 y  | 7.4              | (4.5 to 11.0)  | 4.4         | (1.8 to 7.7)  | 59          | 2.5  | (1.0 to 4.8)  | 34        | 0.3  | 4           | 0.2  | 3  |

\*Numbers of leukocytes are in thousands/mcL (×10<sup>9</sup>/L), ranges are estimates of 95% confidence limits, and percentages refer to differential counts. Neutrophils include band cells at all ages and a small number of metamyelocytes and myelocytes in the first few postnatal days. From Dallman PR. Elood and blood-forming tissues. In: Rudolph AM, ed. *Rudolph's Pediatrics*. 16th ed. New York, NY: Appleton-Century-Crofts; 1977:1178, with pennission.

#### **Platelet Counts**


- Approximately 25%–30% of infants exhibit thrombocytopenia at the time of diagnosis of sepsis and usually it is a late sign.
- Accelerated platelet destruction and possibly depressed production caused by bacterial products on the bone marrow are the underlying mechanisms for thrombocytopenia in infected infants.
- Disseminated intravascular coagulation may be seen in some infants with severe sepsis.

### **Acute-Phase Reactants**

- C-reactive protein (CRP)
  - Produced by the liver and induced by proinflammatory cytokines, and its level rises to a maximum at 12–24 hours.
  - **CRP** value of 5 mg/dL is considered the upper limit of normal.
  - Monitoring CRP levels has been widely used to diagnose infections and to adjust the duration of antibiotic therapy in infants with suspected versus proven sepsis.

### Procalcitonin (PCT)

- Produced by cells such as hepatocytes, nephrons, and monocytes.
- PCT concentrations rise much faster than CRP concentrations; rises at 4 hours, peaks at 6 hours, and plateaus 8–24 hours after a stimulus.
- Most srudies have concluded that PCT levels are superior to CRP levels in the early diagnosis of neonatal sepsis.



- Early recognition and prompt intervention are extremely important in the management of all forms of shock.
- Stabilization of airway, breathing, and circulation.
- Establishment of intravenous (IV) or intraosseous access.
- Rapid IVF of 20 mL/kg isotonic fluid can be repeated quickly up to 60-80 mL/kg.
- If shock remains refractory following volume resuscitation, vasopressor therapy (norepinephrine, or epinephrine) should be instituted.
- If vasopressor resistant shock give cortiosteroids.
- Admitted to an intensive care unit with continuous monitoring.
- Start empiric antibiotic treatment within the first hour of diagnosis.

| Septic | 1 | 11 | Normal or 1 | Ļ | Within 1st hour: Administer isotonic crystalloid boluses, broad-spectrum |
|--------|---|----|-------------|---|--------------------------------------------------------------------------|
|        |   |    |             |   | antibiotics, and consider stress-dose hydrocortisone                     |
|        |   |    |             |   | Warm: Support with norepinephrine or high-dose dopamine                  |
|        |   |    |             |   | Cold: Support with epinephrine or dopamine                               |

| 0 min                                                                         | INFANTS/CHILDREN                                                                                                                                                                                                                                                    |                                                                                                                                                                                     |                                                                                                                                                                                    |  |  |  |  |
|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 5 min                                                                         | Recognize decreased mental status and perfusion.<br>Begin high flow O <sub>2</sub> and establish IO/IV access according to PALS.                                                                                                                                    |                                                                                                                                                                                     |                                                                                                                                                                                    |  |  |  |  |
|                                                                               | If no hepatomegaly or rales/crackles then push 20 mL/kg isotonic saline boluses<br>and reassess after each bolus up to 60 mL/kg until improved perfusion. Stop for<br>rales, crackles or hepatomegaly. Correct hypoglycemia and hypocalcemia.<br>Begin antibiotics. |                                                                                                                                                                                     |                                                                                                                                                                                    |  |  |  |  |
| 15 min                                                                        |                                                                                                                                                                                                                                                                     | Fluid refractory shock                                                                                                                                                              | ?                                                                                                                                                                                  |  |  |  |  |
|                                                                               |                                                                                                                                                                                                                                                                     | ral IV/IO inotrope infusion, preferably Ep<br>ne/Ketamine IV/IO/IM if needed for Cen                                                                                                |                                                                                                                                                                                    |  |  |  |  |
|                                                                               | (Titrate<br>Titrate central N                                                                                                                                                                                                                                       | Titrate Epinephrine 0.05–0.3 µg/kg/min<br>central Dopamine 5–9 µg/kg/min if Epi<br>orepinephrine from 0.05 µg/kg/min and<br>entral Dopamine ≥ 10 µg/kg/min if Nore                  | nephrine not available)<br>upward to reverse Warm Shock.                                                                                                                           |  |  |  |  |
| 60 min                                                                        | c                                                                                                                                                                                                                                                                   | atecholamine-resistant                                                                                                                                                              | shock?                                                                                                                                                                             |  |  |  |  |
|                                                                               | If at risk for Absolute Adrenal Insufficiency consider Hydrocortisone.<br>Use Doppler US, PICCO, FATD or PAC to Direct Fluid, Inotrope, Vasopressor, Vasodilators<br>Goal is normal MAP-CVP, ScvO <sub>2</sub> > 70* and Cl 3.3–6.0 L/min/m <sup>2</sup>            |                                                                                                                                                                                     |                                                                                                                                                                                    |  |  |  |  |
| Cold :<br>ScvO <sub>2</sub> < 70%*                                            | od Pressure<br>Shock<br>/Hgb > 10g/dL<br>ephrine?                                                                                                                                                                                                                   | Low Blood Pressure<br>Cold Shock<br>ScvO <sub>2</sub> < 70%* /Hgb > 10g/dL<br>on Epinephrine?                                                                                       | Low Blood Pressure<br>Warm Shock<br>ScvO <sub>2</sub> < 70%*<br>on Norepinephrine?                                                                                                 |  |  |  |  |
| Add Nitroso-va<br>3.3 L/min/m <sup>2</sup> v<br>and/or poor s<br>Consider Lev | one infusion.<br>sodilator if CI <<br>with High SVRI<br>kin perfusion.<br>vosimendan if<br>cessful.                                                                                                                                                                 | Add Norepinephrine to<br>Epinephrine to attain normal<br>diastolic blood pressure. If Cl <<br>3.3 L/min/m <sup>2</sup> add Dobutamine,<br>Enoximone, Levosimendan, or<br>Milrinone. | If euvolemic, add Vasopressin,<br>Terlipressin, or Angiotensin. But, if<br>CI decreases below 3.3 L/min/m <sup>2</sup><br>add Epinephrine, Dobutamine,<br>Enoximone, Levosimendan. |  |  |  |  |
| Persister                                                                     | nt Catecholan                                                                                                                                                                                                                                                       | nine-resistant shock?                                                                                                                                                               | <b>Refractory shock?</b>                                                                                                                                                           |  |  |  |  |
|                                                                               | Evaluate Pericardial<br>Maintain                                                                                                                                                                                                                                    | ECMO                                                                                                                                                                                |                                                                                                                                                                                    |  |  |  |  |
|                                                                               |                                                                                                                                                                                                                                                                     | CRITICAL CARE MEDICINE                                                                                                                                                              |                                                                                                                                                                                    |  |  |  |  |

### **Antibiotic therapy**

- Early administration of broad-spectrum antimicrobial agents is associated with a reduction in mortality.
- Prompt initiation of empiric antimicrobial therapy based on **patient age**, **underlying disease**, **bacterial resistance and geographic location**.

#### **Antibiotic therapy**

- Neonates ----- ampicillin plus cefotaxime and/or gentamicin.
- *Neisseria meningitidis and Haemophilus influenzae-----* 3rd-generation cephalosporin (ceftriaxone or cefotaxime).
- Resistant *Streptococcus pneumoniae*, Methicillin-resistant *Staphylococcus aureus and* presence of catherters ------ vancomycin.
- Intraabdominal process, aspiration pneumonia, anaerobic coverage ------ metronidazole, clindamycin, or piperacillin-tazobactam.
- Nosocomial sepsis ----- resistant gram positive (vancomycine) + extended gram negtaive coverage (meropenem).
- Herpes simplex virus ----- Acyclovir.
- Fungal infections ----- immunocompromised patients, preterms prolonged Abs use.

