

Introduction

- Hypertension in children is a growing problem.
- Multifactorial in origin.
- Hypertensive children, although usually asymptomatic, already manifest evidence of target organ damage. Up to 40% of hypertensive children have left ventricular hypertrophy and hypertensive children have increased carotid intima-media thickness, a marker of early atherosclerosis.
- Primary hypertension during childhood often tracks into adulthood. Children with BP >90th percentile have a 2.4-fold greater risk of having hypertension as adults. Similarly, nearly half of hypertensive adults had a BP >90th percentile as children. There is also an association between childhood hypertension and early atherosclerosis in young adulthood.
- Early intervention prevents development and progression of target organ damage.

Definition

- The definition of hypertension in adults is $B P \geq 140 / 90 \mathrm{~mm} \mathrm{Hg}$, regardless of body size, sex, or age. This is a functional definition that relates level of BP elevation with the likelihood of subsequent cardiovascular events.
- The definition of hypertension in children is statistical rather than functional. It includes normal values based on the normative distribution of BP in healthy children and tables with systolic and diastolic values for the 50th, 90th, 95th, and 99th percentile by age, sex, and height percentile.

Definition

- So, hypertension is defined as Average systolic blood pressure (SBP) and/or diastolic $B P$ that is ≥ 95 th percentile for age, sex, and height on ≥ 3 occasions.
Adolescents ≥ 13 y/o with BP $\geq 130 / 80$ are considered to be hypertensive.
- Prehypertension is defined as average SBP or diastolic BP that are ≥ 90 th percentile but ≤ 95 th percentile in a medical setting but normal BP outside of the office has white coat hypertension.
Adolescents $\geq 13 \mathrm{y}$ /o with BP levels greater than or equal to $120 / 80 \mathrm{mmHg}$ should be considered to have elevated BP (prehypertension).

Definition

- Studies further recommended that if BP is ≥ 95 th percentile, then the hypertension should be staged.
- Children with BP between the 95th and 99th percentile plus 5 mm Hg are categorized as stage 1 hypertension
- And children with BP above the 99th percentile plus 5 mm Hg have stage $\mathbf{2}$ hypertension.
- Stage 1 hypertension, if asymptomatic and without target organ damage, allows time for evaluation before starting treatment, whereas stage 2 hypertension calls for more prompt evaluation and pharmacologic therapy.

Classification of blood pressure in children and adolescents

Table 166-1	Classification of Blood Pressure
BLOOD PRESSURE	BLOOD PRESSURE
CATEGORY	PERCENTILE (\%)
Normal	<90 th
Prehypertension	'90th to 95 th
Stage 1 hypertension	95 th to ($99 \mathrm{th}+5 \mathrm{~mm} \mathrm{Hg})$
Stage 2 hypertension	$>99 \mathrm{th}+5 \mathrm{~mm} \mathrm{Hg}$

*If 90 th $\%$ is $>120 / 80$, use $120 / 80$ as the lower limit.

Classification of blood pressure in Pediatrics up to 12 years old

Age	$\mathrm{SBP}(\mathrm{mm}$ of Hg$)$	$\mathrm{DBP}(\mathrm{mm}$ of Hg$)$
Newborn	$50-70$	$25-45$
$6 \mathrm{mths}-1 \mathrm{yr}$	$60-90$	$50-70$
$1-6 \mathrm{yrs}$	$70-100$	$40-50$
$7-12 \mathrm{yrs}$	$90-110$	$50-70$

Classification of blood pressure in Children 13 years and older

For Children Aged $\geq 13 \mathrm{y}$
Normal BP: <120/<80 mm Hg Elevated BP: $120 /<80$ to $129 /<80 \mathrm{~mm} \mathrm{Hg}$

Stage 1 HTN: 130/80 to 139/89 mm Hg

Stage 2 HTN: $\geq 140 / 90 \mathrm{~mm}$ Hg

Classification of blood pressure in Boys

Blood Pressure Levels for Boys by Age and Height Percerntile

Arom	$\stackrel{\operatorname{sen}}{\text { Perognse }}$								Oxastatic ssp (mameva)						
		\leftarrow		Percemsite af nelolat \rightarrow					\leftarrow Percemsite of nrelyme \rightarrow						
		Ser	soms	2smb	soun	7 rew	soen	S5en	Sem	sots	25sh	sorm	7nets	soun	95xh
*	50m	80	83	83	as	87	80	Os	36	35	36	37	30	39	39
	som	30	as	37	90	voo	100	103	49	so	50	52	53	53	54
	95un	30	90	no*	100	vos	106	voe	54	54	Ss	Se	57	se	Se
	som	305	Tos	тow	110	182	123	134	61	62	63	Es	65	-6	6s
2	soms	3	\%s	87	88	∞	32	∞	30	40	4	43	43	- 2	4
	sous	37	90	*00	100	vos	10s	+00	5	so	se	57	se	se	so
	asm	งอง	vea	vos	vos	voe	100	110	so	so	∞	ev	E2	es	03
	990n	nos	T10	\%17	1×3	173	127	17	se	er	\cdots	0	70	7	70
3	sonk	me	87	89	9	93	94	93	44	4	45	*	47	*	48
	somm	100	10\%	209	vos	vo7	10e	200	59	59	\cdots	ET	E2	es	*3
	95en	Noe	Tos	vor	109	170	112	113	63	63	©	6s	ec	67	67
	9omm	121	172	17*	120	17e	110	220	77	71	72	73	74	TS	75
*	Som	8	68	0%	93	Os	96	97	47	48	4	so	57	57	52
	som	voz	sas	sos	vor	100	N20	121	62	63	5\%	55	56	©	6)
	asen	voe	*e7	200	**	122	1.4	v*	-	6\%	-8	-9	70	7	71
	soen	13	174	T ข	No	120	12\%	122	74	75	76	75	78	Je	70
s	som	9	9	93	95	Se	ง®	∞	so	5	52	53	54	55	55
	som	vos	vos	voe	vos	* 2	**	112	es	-	67	50	69	09	70
	asen	voe	sos	vo	182	114	115	ve	es	70	70	72	73	7	70
	asen	175	ขve	T 1	120	127	123	123	77	7e	73	-0	อง	as	82
©	Som	97	92	\%	9	9	90	100	53	53	5	ss	Se	57	57
	soen	vas	ข06	vos	vo	20\%	123	113	68	ce	00	70	77	72	32
	asen	voe	$1 \times$	122	***	v*s	v7	**	72	72	73	70	75	70	re
	som-	\% 1 *	177	170	*2*	123	v2a	12s	no	-0	8\%	ex	3	es	E4
7	soun	92	93	9s	97	-	N00	107	55	55	56	57	50	50	50
	90en	voe	vor	vos	11*	* 23	124	1vs	70	70	7π	72	73	78	74
	95m	170	110	1.3	125	1.7	178	, 2 -	74	70	75	76	77	70	78
	som	117	118	120	122	128	125	126	az	80	8	35	as	es	Be
-	soen	94	95	97	30	100	102	102	56	57	5	se	60	∞	61
	90en	207	sos	170	112	124	115	176	70	72	72	73	74	Ts	7e
	95em	*10	12	v**	*v*	v*	*19	120	75	70	77	78	79	79	-0
	poen	110	2200	122	123	v2s	527	127	as	-4	es	5	87	87	Es
-	Soen	9s	∞	$0 *$	voo	108	103	104	57	58	50	60	$6 \pm$	6.	68
	soen	vos	vง	112	18.4	115	117	ข*	72	73	70	75	Te	70	75
	ssem	*13	, 10*	ve	v*	**9	*2\%	427	76	77	re	78	∞	er	er
	apen	N20	12%	123	125	127	*2e	120	es	es	B	e7	Ee	Ee	es
10	soen	97	Se	100	102	109	105	106	Se	50	60	6\%	67	62	63
	som	117	112	134	1.5	107	110	119	73	73	70	75	7e	78	78
	ssen	v15	v1*	1 17	179	ทマา	123	123	75	re	5	mo	ev	er	er
	soun	122	123	125	127	*20	130	130	es	-	80	88	ab	-0	∞

Classification of blood pressure in Girls

Biood Pressuare Levels for Girls by Age and Helght percentile

Arean	Perop	Sywtotie EPP (mambla)							Dinstathe EPF (mampla)						
		\leftarrow		Percentille of Mellatht \rightarrow					\leqslant		Percenntile of Melioht \rightarrow				
		5 sm	nout	25mb	soth	7 rats	sorn	9sen	Sen	10th	2 sers	sorts	75 en	soth	9sen
8	soun	83	64	3s	B6	Be	89	So	30	30	39	40	41	47	42
	sorn	97	97	Oer	voo	107	100	103	52	53	53	54	55	ss	se
	soun	100	vor	vor	vos	Tos	10s	107	50	57	57	se	50	se	eo
	somen	200	vos	sor	1.1	123	123	114	as	6s	53	65	©	6)	67
2	Som-	35	55	87	\%8	80	9\%	97	43	4	4	45	*	46	47
	soen	se	00	100	207	sos	sos	vos	57	se	se	so	©0	6)	en
	90ut	vos	100	vos	vos	vor	voe	109	Ex	03	er	63	ct	as	es
	som	vos	110	171	112	114	115	126	09	09	70	70	70	72	72
3	Scer	Ee	67	Qe	80	9	92	93	47	4	$4{ }^{\circ}$	49	so	so	5%
	soen	100	100	102	103	vos	106	100	ev	er	6	ea	64	64	es
	asen	20s	104	vos	vor	voe	soes	งข	es	Es	-6	67	ee	68	-0
	soen	171	127	123	114	175	176	117	73	73	74	74	75	75	7e
4	soun	es	88	\bigcirc	53	92	94	Se	50	so	57	52	52	53	54
	som	107	vo2	no3	204	ข0e	T07	vos	en	64	50	E	6.	67	6*
	asen	vos	voe	sa7	ข08	120	*1*	1.12	∞	88	00	\%	77	73	72
	som-	112	183	124	125	127	218	320	76	7e	76	78	73	70	ro
5	sorm	-9	\$0	97	93	94	35)	52	53	59	54	55	55	56
	som-	109	$s 00$	vos	100	vor	sos	vos	©0	6\%	ब\%	on	69	09	T0
	9sen	107	+07	voe	170	1.1	112	123	70	75	71	72	73	73	74
	9ous	114	384	126	127	210	120	120	78	73	73	78	eo	81	e.t
6	sour	97	32	93	54	96	97	38	54	54	55	Se	56	57	58
	soun	104	sos	108	Toe	voe	v10	117	E*	*s	60	70	70	73	72
	asen	vos	vos	120	117	123	114	125	72	72	73	34	74	75	тe
	sotn	175	120	117	180	220	120	123	80	mo	80	ev	82	03	8
7	sorn	83	93	96	0	97	99	3	56	se	Se	57	58	58	50
	soun	vos	sor	soe	+00	17	112	173	00	70	\%	77	72	72	73
	semer	170	**	112	113	115	175	Tve	73	74	74	75	76	7e	77
	som-	117	120	119	120	122	123	124	®\%	es	er	er	03	38	as
*	soth	3	95	96	98	99	ง00	107	57	57	57	se	59	∞	\cdots
	30 m	100	100	110	117	113	174	174	77	77	71	72	73	74	74
	asen	112	112	114	115	176	178	118	75	75	75	7e	77	78	78
	soun	218	120	123	122	123	125	125	83	82	83	8	84	35	-
-	soun	56	97	\%	100	102	102	103	Se	58	58	60	60	es	61
	soun	120	120	123	113	124	136	176	72	72	72	73	74	rs	rs
	9ser.	114	174	175	v17	ve	T19	120	76	7e	70	75	70	78	ro
	soun	12:	228	123	124	125	127	127	as	83	cs	es	es	66	87
10	Soms	9n	9	100	s00	103	104	105	so	50	so	∞	63	68	62
	Som	122	122	194	v15	12e	128	12*	73	73	73	74	75	Te	Te
	9sen	126	116	117	119	120	120	122	77	77	77	78	78	no	eo
	sorn	123	123	125	126	127	129	129	E4	es	3	es	ec	87	ee

Management algorithm. BMI, body mass index; BP, blood pressure; Q , every; Rx , prescription; + diet modification and physical activity; \ddagger especially if younger, very high BP, little or no family history, diabetic, or other risk factors. (From National High Blood Pressure Education Program Working Group on High Blood Pressure in Children and Adolescents.

When blood pressure should be measured and for who?

- The American Heart Association recommends that children $\mathbf{3}$ yrs or older should have their BP checked during every healthcare episode (the AHA recommends annual BP checks).
- Selected children <3 yrs old should also have their BP checked under special circumstances, including those with a history of prematurity, congenital heart disease, renal disease, solid-organ transplant, cancer, treatment with drugs known to raise BP, other illnesses associated with hypertension (neurofibromatosis, tuberous sclerosis, others), or evidence of increased intracranial pressure.
- The preferred method is by auscultation and a BP cuff appropriate for the size of the child's arm should be used.

How should blood pressure be measured in children?

- Elevated readings should be confirmed on repeat visits before determining that a child is hypertensive.
- The BP should be measured with the child:
- in the sitting position
- back supported
- feet on ground
- after a period of quiet for at least 5 min.

Following these 7 simple tips
may help you get an accurate
blood pressure reading.Don't Have a Conversation
Talking adds $10-15 \mathrm{mmHg}$
(2) Support Back

Unsupported back adds $5-10 \mathrm{mmHg}$Put Cuff on Bare Arm
Cuff over clothing adds $10-40 \mathrm{mmHg}$
Support Arm at Heart Level Unsupported arm adds 10 mmHg
θ
Empty Bladder
Full bladder adds $10-15 \mathrm{mmHg}$
Keep Legs Uncrossed
Crossing legs adds $5-10 \mathrm{mmHg}$
Support Feet
Unsupported feet add $5-10 \mathrm{mmHg}$

Proper Cuff Size

- Careful attention to cuff size is necessary to avoid over diagnosis, as a cuff that is too short or narrow artificially increases BP readings.
- A wide variety of bladder sizes should be available in any medical office where children are routinely seen.
- An appropriate sized cuff has an inflatable bladder that is at least 40% of the arm circumference at a point midway along the upper arm. The inflatable bladder should cover at least two thirds of the upper arm length and 80-100\% of its circumference.

Ambulatory blood pressure monitoring (ABPM)

Sustained Hypertension

Ambulatory BP

- Ambulatory blood pressure monitoring (ABPM) is a procedure where the child wears a device that records BP frequently, usually every 20-30 min, throughout a 24 hr period while the child goes about usual daily activities, including sleep.
- This allows calculation of the mean daytime BP, sleep BP, and mean BP over 24 hr .
- The physician can also determine the proportion of $B P$ measurements that are in the hypertensive range (BP load) and whether there is an appropriate decrease in BP during sleep (nocturnal dip).
- ABPM is particularly useful in the evaluation for white coat hypertension and may also be useful for determining risk of hypertensive target organ damage, evaluating resistance to pharmacologic therapy, and evaluating patients with hypotensive episodes on antihypertensive medication.
- ABPM is also useful for certain special populations, such as children with chronic kidney disease, kidney transplant, and diabetes mellitus where it may provide important information on cardiovascular risk that cannot be determined as well by office measurements.

Case 1

- An asymptomatic 16-year-old boy has elevated blood pressure documented on several visits, with an average blood pressure of 144/92 mm Hg.
- His height and weight are above the 97th percentile for age.
- His father has hypertension and takes antihypertensive medication.

What is the most appropriate approach for this boy?

1. Have the boy return for a repeat blood pressure measurement in 6 months.
2. Provide lifestyle counseling to increase physical activity and lower dietary salt and repeat blood pressure measurement in 6 months.
3. Begin diagnostic evaluation for stage 2 hypertension.
4. Admit to the hospital for immediate blood pressure reduction.

What is the most appropriate approach for this boy?

1. Have the boy return for a repeat blood pressure measurement in 6 months.
2. Provide lifestyle counseling to increase physical activity and lower dietary salt and repeat blood pressure measurement in 6 months.
3. Begin diagnostic evaluation for stage 2 hypertension.
4. Admit to the hospital for immediate blood pressure reduction.

Joseph TFly!nn, MD / @drjosflynn

Case 1- Initial Diagnostic Evaluation

- ABPM is done, demonstrating sustained hypertension while awake and asleep, with only 7\% SBP dipping.
- Urinalysis is normal. Creatinine is $0.7 \mathrm{mg} / \mathrm{dL}(62 \mu \mathrm{~mol} / \mathrm{L})$
- Random glucose elevated. Triglycerides and LDL cholesterol elevated. HDL cholesterol low

The most likely explanation for HTN in this boy ils:

1. Excess dietary sodium intake
2. Primary hypertension, based on a parent with hypertension.
3. Secondary to pre-diabetes
4. Secondary to obesity

The most likely explanation for HTN in this boy is:

1. Excess dietary sodium intake
2. Primary hypertension, based on a parent with hypertension.
3. Secondary to pre-diabetes
4. Secondary to obesity

Pathophysiology of Obesity HTN

Joseph TFlynn, MD / @drjosflynn

Case 1 Therapy: Initial Approach

- Weight loss is primary therapy but difficult to achieve
- Increased Physical Activity
- 2017 AAP CPG: "Vigorous" physical activity 3-5 d/wk, 30-60 min/session
- Aerobic exercise or combination of aerobic exercise plus resistance training
- Try to find an activity child is already participating in and intensify it
- Nutritional Counseling
- 2017 AAP CPG: Provide advice on the DASH diet
- DASH eating plan: increased fruits and vegetables, low-fat dairy products \pm sodium restriction (www.dashdiet.org)
- AHA: Reduce sodium intake to 1500-2300 mg/day

Family-based intervention improves success

Case 1: Outcome

- He met with a nutritionist who taught him about healthy eating
- Reduced sodium intake
- Cut down on snacks and portion sizes at meals
- His father started taking him to the gym 4 days per week
- He used the treadmill and did weight training
- Over a 2-year period he lost 15 lbs., and his BMI dropped from $>97^{\text {th }}$ percentile to the 93 rd percentile
- His blood pressure fell to the elevated BP range - 120's/70s

Etiology and Pathophysiology

- Blood pressure is the product of cardiac output (CO) and systemic vascular resistance (SVR).
- An increase in either CO or PVR results in an increase in BP.
- If either of these factors increases while the other decreases, BP may not increase.
- When hypertension is the result of another disease process, it is referred to as secondary hypertension.
- When no identifiable cause can be found, it is referred to as primary hypertension.

Pathophysiology

Etiology and Pathophysiology

- Secondary hypertension is most common in infants and younger children.
- It is most often caused by renal abnormalities(90\%); additional etiologies include cardiovascular disease and endocrinopathies.
- Younger age, severely elevated BP, and symptomatic hypertension make a secondary cause of hypertension more likely.
- Many childhood diseases can be responsible for chronic hypertension (Table 1) or acute/intermittent hypertension (Table 2).
- The most likely cause varies with age.
- Hypertension in the premature infant is sometimes associated with: umbilical artery catheterization, renal artery thrombosis, or bronchopulmonary dysplasia.
- Hypertension during early childhood may be caused by:
renal disease, coarctation of the aorta, endocrine disorders, or medications.

Causes of Hypertension

PRIMARY HYPERTENSION	- Essential hypertension - Metabolic syndrome
RENAL CAUSES	- Congenital anomalies (renal dysplasia, obstructive uropathy) - Structural disorders (Wilms tumor, polycystic kidney disease) - Glomerulonephritis - Acquired injury (renal scarring, acute tubular necrosis)
ENDOCRINE CAUSES	- Catecholamine-secreting tumors (pheochromocytoma, neuroblastoma) - Hypercortisolism (Cushing syndrome) - Hyperaldosteronism - Hyperthyroidism
NEUROLOGICAL CAUSES	- Increased sympathetic activity (stress, anxiety, pain) - Dysautonomia - Increased intracranial pressure
VASCULAR CAUSES	- Coarctation of the aorta - Renal artery stenosis - Renal artery embolism (from umbilical artery catheter) - Renal vein thrombosis - Vasculitis
OTHER CAUSES	- Obstructive sleep apnea - Medications, illicit drugs

Table:1 Conditions Associated With Chronic Hypertension in Children

Renal

- Recurrent pyelonephritis/renal scarring
- Chronic glomerulonephritis
- Prematurity
- Congenital dysplastic kidney
- Polycystic kidney disease
- Vesicoureteral reflux nephropathy
- Segmental hypoplasia (AskUpmark kidney)
- Obstructive kidney disease
- Renal tumors
- Renal trauma
- Systemic lupus erythematosus (other connective tissue diseases)

Vascular

- Coarctation of thoracic or abdominal aorta
- Renal artery lesions (stenosis, fibromuscular dysplasia, thrombosis,
- aneurysm)
- Umbilical artery catheterization with thrombus formation
- Neurofibromatosis (intrinsic or extrinsic narrowing for vascular lumen)
- Renal vein thrombosis
- Vasculitis (ANCA associated, polyarteritis nodosa, Takayasu arteritis)
- Arteriovenous shunt
- Williams-Beuren syndrome
- Moyamoya disease

Endocrine

- Hyperthyroidism
- Congenital adrenal hyperplasia (11 β hydroxylase and 17-hydroxylase
- defect)
- Cushing syndrome
- Primary hyperaldosteronism
- Apparent mineralocorticoid excess
- Glucocorticoid remedial aldosteronism (familial aldosteronism type 1)
- Glucocorticoid resistance (Chrousos syndrome)
- Pseudohypoaldosteronism type 2 (Gordon syndrome)
- Pheochromocytoma
- Other neural crest tumors (neuroblastoma, ganglioneuroblastoma, ganglioneuroma)
- Liddle syndrome
- Geller syndrome

Central Nervous

System

- Intracranial mass
- Hemorrhage
- Residual following brain injury
- Quadriplegia (dysautonomia)
- Sleep disordered breathing

Table:2 Conditions Associated With Transient or Intermittent Hypertension in Children

Renal

- Acute postinfectious glomerulonephritis
- Henoch-Schönlein purpura with nephritis
- Hemolytic-uremic syndrome
- Acute kidney injury
- After renal transplantation (immediately and during episodes of rejection)
- Hypervolemia
- Pyelonephritis
- Renal trauma
- Leukemic infiltration of the kidney

Drugs and Poisons

- Cocaine
- Oral contraceptives
- Sympathomimetic agents
- Amphetamines
- Phencyclidine
- Corticosteroids and adrenocorticotropic hormone
- Cyclosporine, sirolimus, or tacrolimus treatment after transplantation
- Licorice (glycyrrhizic acid)
- Lead, mercury, cadmium, thallium
- Antihypertensive withdrawal (clonidine, methyldopa, propranolol)
- Vitamin D intoxication

Central and Autonomic Nervous System

- Increased intracranial pressure
- Guillain-Barré syndrome
- Burns
- Familial dysautonomia
- Stevens-Johnson syndrome
- Posterior fossa lesions
- Porphyria
- Poliomyelitis
- Encephalitis
- Spinal cord injury (autonomic storm)

Miscellaneous

- Preeclampsia
- Pain, anxiety
- Hypercalcemia
- After coarctation repair
- White blood cell transfusion
- Extracorporeal membrane oxygenation (ECMO)

Secondary Hypertension

- Renal disease (e.g., chronic glomerulonephritis, reflux or obstructive nephropathy, hemolytic-uremic syndrome, polycystic kidney disease, congenital anomalies of the kidney and urinary tract) and renovascular hypertension account for approximately 90% of children with secondary hypertension.
- Renal parenchymal disease and renal artery stenosis lead to water and sodium retention thought to be, in part, secondary to increased renin secretion.
- Coarctation of the aorta must always be considered.
- Several endocrinopathies are associated with hypertension, usually those involving the thyroid, parathyroid, and adrenal glands.
- Systolic hypertension and tachycardia are common in hyperthyroidism; DBP is not usually elevated.
- Hypercalcemia, whether secondary to hyperparathyroidism or other causes, often results in mild elevation in BP because of an increase in vascular tone.
- Adrenocortical disorders (e.g., aldosterone-secreting tumors, sodium-retaining congenital adrenal hyperplasia, Cushing syndrome) may produce hypertension in patients with increased mineralocorticoid secretion.
- It is important to consider conditions associated with real or apparent mineralocorticoid excess and thus a suppressed renin level (with or without hypokalemia) form of secondary hypertension (Table 3).
- hypercortisolism \rightarrow stimulation of aldosterone receptors in high concentrations and \uparrow potassium excretion $\rightarrow \uparrow$ blood pressure
- \uparrow Aldosterone \rightarrow 个 Na+ reabsorption and retention \rightarrow water retention \rightarrow hypertension

Table:3 Clinical Findings in Patients With Mineralocorticoid Excess

CONDITION	CLINICAL PRESENTATION
- CAH: 11β-hydroxylase deficiency	Early growth spurt initially, then short adult stature, advanced bone age, premature adrenarche, acne, precocious puberty in males, amenorrhea/ hirsutism/virilism in females (autosomal recessive)
- CAH: 17α-hydroxylase deficiency	Pseudohermaphroditism (male), sexual infantilism (female) (autosomal recessive)
- Apparent mineralocorticoid excess	Growth retardation/short stature, nephrocalcinosis (autosomal recessive)
- Liddle syndrome	Severe hypertension, hypokalemia, and metabolic alkalosis, muscle weakness (autosomal dominant)
- Geller syndrome	
(exacerbated by pregnancy)	Early onset of hypertension (before age 20 yr), exacerbated in pregnancy
-Glucocorticoid-remediable aldosteronism (GRA) (familial aldosteronism type 1)	Early onset of hypertension, presence of family history of mortality or morbidity from early hemorrhagic stroke (autosomal dominant)
-Pseudohypoaldosteronism type 2 (Gordon syndrome)	Short stature, hyperkalemic and hyperchloremic metabolic acidosis, borderline blood pressure (autosomal dominant))
-Glucocorticoid resistance (children) (Chrousos syndrome)	Ambiguous genitalia, precocious puberty; women may have androgen excess: acne, excessive hair, oligo/anovulation, infertility (familial or sporadic)

Secondary Hypertension

- Pheochromocytomas are catecholamine-secreting tumors that give rise to hypertension because of the cardiac and peripheral vascular effects of epinephrine and norepinephrine.
- Children with pheochromocytoma usually have sustained rather than intermittent or exercise-induced hypertension.
- Pheochromocytoma develops in approximately 5% of patients with neurofibromatosis and can also be seen in certain genetic disorders such as von Hippel-Lindau disease.
- Rarely, secondary hypertension can be caused by pseudohyperaldosteronism, which leads to elevated BP in the face of a suppressed renin level. Such disorders include Liddle syndrome, apparent mineralocorticoid excess, and glucocorticoid-remediable aldosteronism.
- Altered sympathetic tone can be responsible for acute or intermittent elevation of BP in children with GuillainBarré syndrome, poliomyelitis, burns, and Stevens- Johnson syndrome. Intracranial lesions also affect sympathetic outflow from the central nervous system.

Secondary Hypertension

- A number of drugs of abuse , therapeutic agents, and toxins may cause hypertension.
- Cocaine may provoke a rapid increase in BP and can result in seizures or intracranial hemorrhage.
- Phencyclidine causes transient hypertension that may become persistent in chronic abusers.
- Tobacco use may also increase BP.
- Sympathomimetic agents used as nasal decongestants, appetite suppressants, and stimulants for attention-deficit disorder produce peripheral vasoconstriction and varying degrees of cardiac stimulation. Individuals vary in their susceptibility to these effects.
- Oral contraceptives should be suspected as a contributor to elevated BP in adolescent girls, although the incidence is lower with the use of low-estrogen preparations.
- Immunosuppressant agents such as cyclosporine and tacrolimus cause hypertension in organ transplant recipients, and the effect is exacerbated by the co-administration of corticosteroids.
- BP may be elevated in patients with poisoning by a heavy metal (lead, cadmium, mercury).

Primary Hypertension

- In older school-age children and adolescents, primary hypertension becomes increasingly common. These patients often are overweight, have a strong family history of hypertension, and have BP values at, or only slightly above, the $95^{\text {th }}$ percentile for age.
- Isolated systolic hypertension is also more consistent with primary hypertension, whereas diastolic hypertension may suggest a secondary cause.
- The cause of primary hypertension is likely to be multifactorial; obesity, genetic alterations in calcium and sodium transport, vascular smooth muscle reactivity, the renin-angiotensin-aldosterone system (RAAS), sympathetic nervous system over activity, and insulin resistance have been implicated in this disorder.
- Elevated uric acid levels may play a role in the pathophysiology of primary hypertension, and proof-of-concept studies have confirmed that lowering of uric acid levels results in lower BP in overweight youth with hypertension or prehypertension.

Primary Hypertension

- Some children and adolescents demonstrate salt-sensitive hypertension , a factor that is ameliorated with weight loss and sodium restriction.
- Normotensive children of hypertensive parents may show abnormal physiologic responses that are similar to those of their parents. When subjected to stress or competitive tasks, the offspring of hypertensive adults, as a group, respond with greater increases in heart rate and BP than do children of normotensive parents.
- Similarly, some children of hypertensive parents may excrete higher levels of urinary catecholamine metabolites or may respond to sodium loading with greater weight gain and increases in BP than do those without a family history of hypertension.
- The abnormal responses in children with affected parents tend to be greater in the black population than among white individuals.

Clinical Manifestations

- Children and adolescents with primary hypertension are usually asymptomatic.
- the BP elevation is usually mild and is detected during a routine examination or evaluation before athletic participation. These children may also be obese.
- Children with secondary hypertension can have BP elevations ranging from mild to severe.
- Unless the BP has been sustained or is rising rapidly, hypertension does not usually produce symptoms.
- Therefore, clinical manifestations may instead reflect the underlying disease process, such as growth failure in children with CKD.
- Children and adolescents with acute severe hypertension, in contrast, present with BP elevation well above stage $\mathbf{2}$ ($\mathbf{~} \mathbf{9 9}{ }^{\text {th }} \mathbf{+ 5 m m h g}$) hypertension and severe symptoms that may represent acute target-organ injury.
- Subclinical hypertensive target-organ injury is a common clinical manifestation in children with primary hypertension. Using echocardiography with pediatric normative data, left ventricular hypertrophy is detected in up to 40% of hypertensive children.
- Other markers of target-organ damage that have been demonstrated in hypertensive children include: hypertensive retinopathy, increased carotid intima-to-media thickness, and increased vascular stiffness.
- Children with prehypertension also have evidence of target-organ damage, often at a magnitude intermediate between that of normotensive and hypertensive children.

Goals of the evaluation

- Distinguish between primary and secondary HTN
- Uncovering potential underlying causes of the hypertension
- Evaluating for comorbidities
- Identify patients for whom antihypertensive drug therapy is warranted
- Screening for evidence of target organ damage
- The extent of the evaluation for underlying causes of hypertension depends on the type of hypertension that is suspected.

History

Age

- Secondary HTN is more likely in younger children, especially those less than 6 years of age. While older children and adolescents are more likely to have primary HTN.

Onset

- Acute, severe onset is caused by drug toxicity , coarctation of aorta or hypertensive encephalopathy.

Associated symptoms :

* Abdominal pain, dysuria, frequency, nocturia, enuresis, hematuria, and edema may indicate a renal cause

In infants, growth failure, irritability, and feeding problems may be symptoms of HTN
Joint pain or swelling may be due to collagen vascular diseases
Weight loss, sweating, and pallor may be due to a catecholamine- secreting tumor.

History

Muscle cramps or weakness and constipation may be seen with the hypokalemia associated with hyperaldosteronism

- Menstrual disorders, hirsutism, and virilization may indicate forms of congenital adrenal hyperplasia (CAH) associated with HTN
* A neonatal history of umbilical artery line placement can result in renal artery embolization, leading to HTN
* History of prolonged loud snoring may identify sleep- related causes of HTN
* Hypertensive encephalopathy may occur as nausea, vomiting, altered mental status, visual disturbances, seizures, or stroke.
*Intermittent HTN may be present in patients with autonomic instability (e.g., Guillain-Barré syndrome, burns, poliomyelitis, Stevens-Johnson syndrome, porphyria)
*Family history of hypertension , early deaths or renal diseases .
History of drug intake

History in the child or adolescent with elevated blood pressure

History	Possible cause of hypertension
CNS: Head trauma, headache, visual disturbance lethargy. seizures, tremors morning vomiting	Elevated intracranial pressure
Hearing: Hearing loss	Renal disease (ie, Alport syndrome)
	Lead poisoning
Cardiovascular: Palpitations, irregular pulse	Catecholamine excess
Renal: Edema, history of UTI or unexplained fever, abnormal urine color, enuresis, flank pain, dysuria	Renal disease or condition (eg. pyelonephritis, acute glomerulonephritis, acute kidney injury. and chronic kidney disease)
Skin: Rash, sweating pallor	Catecholamine excess
	Thyroid dysfunction
Renal vasculitis	
Recent medical history: Recent pharyngitis or	Post-infectious glomerulonephritis
impetigo, exposure to sources of enterohemorrhagic E. coll	Hemolytic uremic syndrome
Medications: Sympathomimetics oral contraceptives, corticosteroids	Side effect of medication
Substance use: Cocaine, amphetamines anabolic steroids phencyclidine, ephedra- containing alternative medications caffeine	Drug-mediated effects
Family history: Hypertension early MI. diabetes, stroke	Essential hypertension
Sexual history: Postmenarchal female actively engaged in sexual intercourse	Preeclampsia
Neonatal history: Use of umbilical artery catheters	Renovascular hypertension
Growth history: Excessive weight gain or loss, change in growth percentiles	Obesity, thyroid dysfunction
Dietary history: Types and amount of food ingested; salt craving	Obesity, essential hypertension
Social history: Stress factors at home and school	Stress

Physical Examination :

Physical Examination Finding	Possible Etiology
General	
Obesity	Essential Hypertension
Truncal Obesity	Cushing syndrome, Corticosteroid therapy
Growth Retardation	Chronic Kidney Disease
Vital Signs	Catecholamine excess (PCC or neuroblastoma) or Hyperthyroidism
Tachycardia	If upper extremity BP> Lower extremity BP, coarctation of aorta
BP difference in Extremeties	Williams Syndrome
Head and Neck	Cushing Syndrome, Corticosteroid therapy
Elfin face	Hyperthyroidism
Moon Face	Turner Syndrome
Thyroid enlargement or goiter	Sleep-disordered breathing, Sleep apnea
Webbed Neck	
Tonsillar Hypertrophy	

Physical Examination Finding				Possible Etiology
Eye				
Retinal changes	Suggest severe hypertension and secondary etiology			
Papilledema	Increase intracranial pressure			
Skin				
	Pallor, flushing			
Acne, hirsutism, striae	Catecholamine excess (PCC and neuroblastoma)			
	Café-au-lait spots and/or neurofibromas			
Ash leaf spots and/or adenoma sebaceum	Cushing syndrome, corticosteroid therapy			
Rash	Tuberous sclerosis			
	Acanthosis nigricans			
Chest	Lupus nephritis, Henoch-Schönlein purpura (IgA vasculitis)			
Widely spaced nipples	Type 2 diabetes			
Murmur	Turner syndrome			
	Apical heave			
Abdomen	Coarctation of the aorta			
Abdominal bruit	Left ventricular hypertrophy			
Mass	Renovascular disease			

Physical Examination :

Physical Examination Finding	Possible Etiology
Extremities	
Traction/casts	Orthopedic Manipulation
Asymmetry of limbs	Beckwith-Weidemann syndrome
Arthritis	Henoch-Schonlein purpura (igA vasculitis), Collagen vascular disease (systemic lupus erythematous)
Neurologic	
Muscle Weakness	Liddle syndrome, hyperaldosteronism
Diminished pain response	Familial dysautonomia
Genitalia	
Ambiguous/ virilization	Adrenal Hyperplasia
Advanced puberty	Intracranial tumors

Investigations

Initial evaluation

- CBC
- BUN/ creatinine
- Electrolytes, calcium
- Urinalysis
- Renal ultrasound

Consider

- Evaluation for co-morbidity
- -Fasting lipid panel
- -Fasting glucose
- -Polysomnography (sleep study)
- Evaluation for target-organ damage
- -Echocardiogram (LVH)
- -Retinal exam

Investigations

Further evaluation as indicated

(stage 2, prepubertal age, findings specific to underlying condition)
(1)Free T4, TSH
(1)Ambulatory BP monitoring
(1)Plasma renin
(10Renovascular imaging
(10)Plasma and urine catecholamines
(10)Plasma and urinary steroids
(DU) Urine pregnancy test (if suspected)
(10Cranial imaging (should be considered to rule out an intracranial mass in children with H and P indicating raised ICP)

Case 2

- 5 y/o boy, presents for routine well-child visit
- Not seen in > 2 years.
- BP's 137/85, 129/90, confirmed by you with manual sphygnomanometer
- What's the next step ?

Case 2 - DIAGNOSIS

- History

- Has had intermittent headaches without any accompanying symptoms
- Was a term baby with no neonatal complications and no prior hospitalizations or surgeries
- No medication or supplement use
- FH of HTN affecting father, 3 of 4 grandparents, mother has T2DM. No FH of kidney disease

- Physical examination

- Normal appearance
- Weight 33.9 kg (>97\%tile)
- Height 118.1 cm (50\%tile)
- BMI 24 kg/m2 (>97\%tile)
- HEENT, cardiac, abdominal, GU exams all normal
- Referred to HTN Clinic
- Referral BP's 137/85, 129/90
- UE BP's in our office: 132/92, 128/88, 140/89
- Mean BP: 133/80
- 90th percentile: 107/68
- 95th percentile: 111/71
- 95th percentile $+12 \mathrm{mmHg}: 123 / 83$
- LE BP's done: 102/55, 108/70
- Investigations
- Labs, imaging studies ordered
- Started on propranolol
- Normal UA, creatinine, electrolytes, elevated renin
- Echocardiogram: structurally normal heart with LVH
- Complete kidney US: kidneys of normal appearance and size bilaterally
- CT- angiogram performed

Case 2 - CT ANGIOGRAM

Relevant Guidance from the 2017 AAP CPG

- 16. Doppler renal ultrasonography may be used as a noninvasive screening study for the evaluation of possible RAS in normal wt children and adolescents $\geq 8 \mathrm{y}$ of age who are suspected of having renovascular HTN and who will cooperate with the procedure.
- C, moderate
- 17. In children and adolescents suspected of having RAS, either CTA or MRA may be performed as noninvasive imaging studies.
- D, weak
- 11. Children and adolescents $\geq 6 y$ of age do not require an extensive evaluation for secondary causes of HTN if they have:
- -a positive family history of HTN
- -are overweight or obese
- -and/or do not have history or physical examination findings suggestive of a secondary cause of HTN.
- C, Moderate

Distribution of HTN Causes by Age

Case 2: Follow-up

- Propranolol and amlodipine needed to control BP
- Repeat echo 6 mo later - improved LVH
- Followed with repeat kidney ultrasounds to monitor kidney growth
- Underwent surgical reconstruction of abdominal aorta and reimplantation of renal arteries bilaterally
- Now off antihypertensive medications but still being closely followed

Prevention

- Prevention of high BP may be viewed as part of the prevention of cardiovascular disease and stroke, the leading cause of death in adults in the United States.
- Population approaches to prevention of primary hypertension include :
- A reduction in obesity
- Reduced sodium intake
- an increase in physical activity through school- and community-based programs.

Treatment

- Children + Asymptomatic mild hypertension without evidence of target-organ damage:

1. Lifestyle modification
2. Dietary changes:

DASH diet (diet increased in fresh fruits, fresh vegetables, fiber, and nonfat dairy and reduced in sodium)
3. Regular exercise:

30-60 min on most days

Treatment

Indications for pharmacologic therapy include

symptomatic hypertension
stage 2 hypertension without a modifiable risk factor
hypertension in patients with comorbidities such as diabetes (types 1 and 2) or CKD persistent hypertension despite nonpharmacologic measures.

* Acceptable initial agents for use in children:

Angiotensin-converting enzyme inhibitors (ACEIs)
Angiotensin receptor blockers (ARBs)
Thiazide diuretics
Calcium channel blockers
The choice of antihypertensive agent for a patient should be tailored to the etiology of that patient's hypertension whenever possible.

FIG. 472.3 Stepped-care approach to antihypertensive therapy in children and adolescents. BP, Blood pressure. (From Flynn JT, Daniels SR: Pharmacologic treatment of hypertension in children and adolescents, J Pediatr 149:746-754, 2006, Fig 2, p

CLASS	DRUG	STARTING DOSE	INTERVAL	MAXIMUM DOSE*
Aldosterone receptor antagonist	Eplerenone	$25 \mathrm{mg} /$ day	qd-bid	$100 \mathrm{mg} /$ day
	Spironolactone ${ }^{\dagger}$	$1 \mathrm{mg} / \mathrm{kg} /$ day	qd-bid	$3.3 \mathrm{mg} / \mathrm{kg} /$ day up to $100 \mathrm{mg} /$ day
Angiotensin-converting enzyme inhibitors	Benazepril \dagger	$0.2 \mathrm{mg} / \mathrm{kg} /$ day up to 10 $\mathrm{mg} /$ day	qd	$0.6 \mathrm{mg} / \mathrm{kg} /$ day up to $40 \mathrm{mg} /$ day
	Captopril \dagger	$0.5 \mathrm{mg} / \mathrm{kg} /$ dose ($0.05 \mathrm{mg} / \mathrm{kg} /$ dose in infants)	tid	$6 \mathrm{mg} / \mathrm{kg} /$ day up to 450 mg/day
	Enalapril \dagger	$0.08 \mathrm{mg} / \mathrm{kg} /$ day	qd	$0.6 \mathrm{mg} / \mathrm{kg} /$ day up to $40 \mathrm{mg} /$ day
	Fosinopril	$0.1 \mathrm{mg} / \mathrm{kg} /$ day up to 10 mg/day	qd	$0.6 \mathrm{mg} / \mathrm{kg} /$ day up to $40 \mathrm{mg} /$ day
	Lisinopril \dagger	$0.07 \mathrm{mg} / \mathrm{kg} /$ day up to 5 $\mathrm{mg} /$ day	qd	$0.6 \mathrm{mg} / \mathrm{kg} /$ day up to $40 \mathrm{mg} /$ day $40 \mathrm{mg} /$ day
	Quinapril	5-10 mg/day	qd	$80 \mathrm{mg} /$ day
	Ramipril	$1.6 \mathrm{mg} / \mathrm{m}^{2} /$ day	qd	$6 \mathrm{mg} / \mathrm{m}^{2}$ /day up to 10 mg /day
Angiotensin receptor blockers	Candesartan	$\begin{aligned} & 1-6 \mathrm{yr}: 0.2 \mathrm{mg} / \mathrm{kg} / \text { day } \\ & 6-17 \mathrm{yr} \\ & <50 \mathrm{~kg} 4-8 \mathrm{mg} \mathrm{qd} \\ & >50 \mathrm{~kg} 8-16 \mathrm{mg} \text { qd } \end{aligned}$	qd	$\begin{aligned} & 1-6 \mathrm{yr}: 0.4 \mathrm{mg} / \mathrm{kg} \\ & \text { up to } 4 \mathrm{mg} / \mathrm{day} \\ & 6-17 \mathrm{yr}: \\ & <50 \mathrm{~kg}: 16 \mathrm{mg} \mathrm{qd} \\ & >50 \mathrm{~kg}: 32 \mathrm{mg} \mathrm{gd} \end{aligned}$
	Losartan \dagger	$0.75 \mathrm{mg} / \mathrm{kg} /$ day up to 50 $\mathrm{mg} /$ day	qd	$1.4 \mathrm{mg} / \mathrm{kg} /$ day up to $100 \mathrm{mg} /$ day
	Olmesartan	20 to $<35 \mathrm{~kg} 10 \mathrm{mg}$ qd; $\geq 35 \mathrm{~kg} 20 \mathrm{mg}$ qd	qd	20 to < 35 kg : 20 mg qd $\geq 35 \mathrm{~kg}: 40 \mathrm{mg}$ qd
	Valsartan \dagger	6-17 yr: $1.3 \mathrm{mg} / \mathrm{kg} /$ day up to $40 \mathrm{mg} /$ day	qd	6-17 yr: 2.7 $\mathrm{mg} / \mathrm{kg} /$ day up to 160 mg/day
α - and β-Adrenergic antagonists	Labetalol \dagger	2-3 mg/kg/day	bid	$10-12 \mathrm{mg} / \mathrm{kg} /$ day up to $1.2 \mathrm{~g} / \text { day }$
	Carvedilol	$0.1 \mathrm{mg} / \mathrm{kg} /$ dose up to 6.25 mg bid	bid	$\begin{aligned} & \hline 0.5 \mathrm{mg} / \mathrm{kg} / \text { dose up to } \\ & 25 \mathrm{mg} \text { bid } \\ & \hline \end{aligned}$
β-adrenergic antagonists	Atenolol \dagger	$0.5-1 \mathrm{mg} / \mathrm{kg} /$ day	qd-bid	$\begin{aligned} & \hline 2 \mathrm{mg} / \mathrm{kg} / \text { day up to } 100 \\ & \mathrm{mg} / \mathrm{day} \end{aligned}$
	Bisoprolol/HCTZ	2.5/6.25 mg/day	qd	$10 / 6.25 \mathrm{mg}$ /day
	Metoprolol	$1-2 \mathrm{mg} / \mathrm{kg} /$ day	bid	$\begin{aligned} & \hline 6 \mathrm{mg} / \mathrm{kg} / \text { day up to } 200 \\ & \mathrm{mg} / \text { day } \end{aligned}$
	Propranolol	$1 \mathrm{mg} / \mathrm{kg} /$ day	bid-tid	$8 \mathrm{mg} / \mathrm{kg} /$ day up to 640 mg/day

Treatment

Calcium channel blockers	Amlodipine \dagger	$1-5$ yr: $0.1 \mathrm{mg} / \mathrm{kg} /$ day ≥ 6 yr: $2.5 \mathrm{mg} /$ day	qd	$1-5 \mathrm{yr}: 0.6$ $\mathrm{mg} / \mathrm{kg} /$ day up to 5 mg /day $\geq 6 \mathrm{yr}: 10 \mathrm{mg} /$ day
	Felodipine	$2.5 \mathrm{mg} /$ day	qd	$10 \mathrm{mg} /$ day
	Isradipine ${ }^{\dagger}$	0.05-0.15 mg/kg/dose	tid-qid	$0.6 \mathrm{mg} / \mathrm{kg} /$ day up to $10 \mathrm{mg} /$ day
	Extended-release nifedipine	0.2-0.5 mg/kg/day	qd-bid	$3 \mathrm{mg} / \mathrm{kg} /$ day up to 120 mg/day
Central α-agonist	Clonidine ${ }^{\dagger}$	$5-10 \mu \mathrm{~g} / \mathrm{kg} /$ day	bid-tid	$25 \mu \mathrm{~g} / \mathrm{kg} /$ day up to 0.9 mg/day
Diuretics	Amiloride	$5-10 \mathrm{mg} /$ day	qd	$20 \mathrm{mg} /$ day
	Chlorthalidone	$0.3 \mathrm{mg} / \mathrm{kg} /$ day	qd	$2 \mathrm{mg} / \mathrm{kg} /$ day up to 50 mg/day
	Chlorothiazide	$10 \mathrm{mg} / \mathrm{kg} /$ day	bid	$20 \mathrm{mg} / \mathrm{kg} /$ day up to $375 \mathrm{mg} /$ day
	Furosemide	0.5-2.0 mg/kg/dose	qd-bid	$6 \mathrm{mg} / \mathrm{kg} /$ day
	HCTZ	$0.5-1 \mathrm{mg} / \mathrm{kg} /$ day	qd	$3 \mathrm{mg} / \mathrm{kg} /$ day up to $37.5 \mathrm{mg} /$ day
Vasodilators	Hydralazine	$0.25 \mathrm{mg} / \mathrm{kg} /$ dose	tid-qid	$7.5 \mathrm{mg} / \mathrm{kg} /$ day up to $200 \mathrm{mg} /$ day
	Minoxidil	0.1-0.2 mg/kg/day	bid-tid	$1 \mathrm{mg} / \mathrm{kg} /$ day up to 50 mg/day

* The maximum recommended adult dose should never be exceeded.
${ }^{\dagger}$ Information on preparation of a stable extemporaneous suspension is available for these agents. bid, Twice daily; HCTZ, hydrochlorothiazide; qd, once daily; qid, 4 times daily; tid, 3 times daily.
Adapted from Flynn JT: Management of hypertension in the young: role of antihypertensive medications, J Cardiovasc Pharmacol 58(2)111-120, 2011.

Treatment

- There have been changes in the recommended BP goals for treatment of hypertension in children and adolescents.
- Data from the SPRINT (SBP intervention) trial group suggests that stricter goals (SBP goal of 120 vs 140 mm Hg) improve cardiovascular outcomes in adults.
- In children with CKD, the ESCAPE (Effects of Strict BP Control and Angiotensin-Converting Enzyme Inhibition on the Progress of Chronic Renal Failure in Pediatric Patients) trial group showed slower progression of CKD if the 24 hr MAPs were kept below the 50th percentile on ABPM compared to the 50th-95th percentile.
- It is now recommended that treatment achieve BP such as headache, dizziness, or nausea/vomiting (hypertensive urgency) and in more severe cases, retinopathy, encephalopathy, cardiac failure, renal injury, and seizures(hypertensive emergency)

Hypertensive Encephalopathy (generalized or posterior reversible encephalopathy syndrome)

- It is suggested by the presence of

1. Headache
2. Vomiting
3. Temperature elevation
4. Visual disturbances
5. Ataxia
6. Depressed level of consciousness

- it is one of the more common presentations of acute severe hypertension in children and adolescents.

FIG. 472.4 Magnetic resonance image of brain of a 6 yr old boy with end-stage renal disease and hypertensive encephalopathy (i.e., posterior reversible

Treatment

Manifest of Acute severe hypertension

- Decreased vision (cortical blindness)
- Papilledema
- Congestive heart failure
- Accelerated deterioration of renal function

Acute severe hypertension and life-threatening symptoms,

- Intensive care unit (ICU) admission
- Intravenous (IV) drug infusion
- Arterial lines should be used for continuous BP monitoring
- It is indicated so that decreases in BP can be carefully monitored and titrated

Drug of choice

- labetalol, nicardipine, and sodium nitroprusside.
- Why ?

1. Rapid a reduction in $B P$ may interfere
2. Adequate organ perfusion

Antihypertensive Drugs for Management of Severe Hypertension in Children Age 1-17 yr.

DRUG	CLASS	DOSE ROUTE COMMENTS		
USEFUL FOR SEVERELY HYPERTENSIVE PATIENTS WITH LIFE-THREATENING SYMPTOMS				
Esmolol	β Adrenergic blocker	$100-500 \mu \mathrm{~g} / \mathrm{kg} / \mathrm{min}$	$\begin{aligned} & \hline \text { IV } \\ & \text { infusion } \end{aligned}$	Very short acting - constant infusion preferred; may cause profound bradycardia
Hydralazine	Direct vasodilator	0.2-0.4 mg/kg/dose	IV, IM	Should be given every 4 hr when given IV bolus
Labetalol	α - and β Adrenergic blocker	Bolus: 0.20-1.0 $\mathrm{mg} / \mathrm{kg} /$ dose, up to $40 \mathrm{mg} /$ dose Infusion: 0.25-3.0 $\mathrm{mg} / \mathrm{kg} / \mathrm{hr}$	IV bolus or infusion	Asthma and overt heart failure are relative contraindications.
Nicardipine	Calcium channel blocker	Bolus: $30 \mu \mathrm{~g} / \mathrm{kg}$ up to $2 \mathrm{mg} /$ dose Infusion: 0.5-4 $\mu \mathrm{g} / \mathrm{kg} / \mathrm{min}$	IV bolus or infusion	May cause reflex tachycardia
$\begin{aligned} & \hline \text { Sodium } \\ & \text { nitroprusside } \end{aligned}$	Direct vasodilator	$0.5-10 \mu \mathrm{~g} / \mathrm{kg} / \mathrm{min}$	IV infusion	Monitor cyanide levels with prolonged ($>72 \mathrm{hr}$) use or in renal failure; or co-administer with sodium thiosulfate.
USEFUL FOR SEVERELY HYPERTENSIVE PATIENTS WITH LESS SIGNIFICANT SYMPTOMS				
Clonidine	Central α agonist	$0.05-0.1 \mathrm{mg} /$ dose, may be repeated up to 0.8 mg total dose	PO	Side effects include dry mouth and drowsiness.
Fenoldopam	Dopamine receptor agonist	0.2-0.8 $\mu \mathrm{g} / \mathrm{kg} / \mathrm{min}$	IV infusion	Produced modest reductions in blood pressure in a pediatric clinical trial in patients up to age 12 yr
Hydralazine	Direct vasodilator	$0.25 \mathrm{mg} / \mathrm{kg} /$ dose, up to $25 \mathrm{mg} /$ dose	PO	Extemporaneous suspension stable for only 1 wk
Isradipine	Calcium channel blocker	$0.05-0.15 \mathrm{mg} / \mathrm{kg} /$ dose, up to $5 \mathrm{mg} /$ dose	PO	Stable suspension can be compounded.
Minoxidil	Direct vasodilator	$0.1-0.2 \mathrm{mg} / \mathrm{kg} /$ dose, up to $10 \mathrm{mg} /$ dose	PO	Most potent oral vasodilator; long acting

ACE, Angiotensin-converting enzyme; IM, intramuscular; IV, intravenous; PO, oral.
Adapted from Flynn JT, Tullus K: Correction to severe hypertension in children and adolescents: pathophysiology and treatment, Pediatr Nephrol 27(3):503-504, 2012.

Treatment

- In general, BP should be reduced by no more than 25% of the planned reduction over the $1^{\text {st }} 8 \mathrm{hr}$., with a gradual normalization of BPs over next $24-48 \mathrm{hr}$.
- For patients with less severe symptoms, such as headache or nausea/vomiting,

1. Oral medications such as Clonidine or Isradipine can be used
2. Short-acting IV medications such as hydralazine or labetalol are

Treatment

Case 3: Initial evaluation

- A14-year-old soccer player referred for evaluation of elevated blood pressure detected at a pre-sports participation screening at her school.
- Blood pressures obtained at the screening ranged from $137-149 / 75-80 \mathrm{mmHg}$.
- Repeat office BP's are similar to the readings at the sports physical
- She denies any symptoms of hypertension.
- She is at the 50th percentile for height and weight and has no other chronic health problems or abnormal physical examination findings. Both parents have hypertension.

Next step should be:

1. Start hydrochlorothiazide 25 mg daily
2. Refer to IR for arteriogram
3. Perform 24 -hr ambulatory BP monitoring
4. Request that the school nurse check her BP daily for the next 10 days

Next step should be:

1. Start hydrochlorothiazide 25 mg daily

2. Refer to IR for arteriogram
3. Perform 24-hr ambulatory BP monitoring
4. Request that the school nurse check her BP daily for the next 10 days

Further Evaluation

- 24-hr ABPM demonstrates sustained ambulatory hypertension with normal nocturnal dipping
- Urinalysis, electrolytes, BUN and Cr are normal.
- Fasting lipids: total cholesterol 195, LDL cholesterol 90, HDL cholesterol 52, triglycerides 165.

What is your diagnosis?

1. Metabolic Syndrome
2. Primary hypertension
3. Renal artery stenosis
4. Polycystic kidney disease

What is your diagnosis?

1. Metabolic Syndrome

2. Primary hypertension
3. Renal artery stenosis
4. Polycystic kidney disease

Joseph T Flynn, MD/ @drjosflynn

Goal for Antihypertensive Treatment in Children

- 19. In children and adolescents diagnosed with HTN, the treatment goal with nonpharmacologic and pharmacologic therapy should be a reduction in SBP and DBP to <90 th percentile and $<130 / 80 \mathrm{~mm} \mathrm{Hg}$ in adolescents ≥ 13 years old.
- C, moderate
- 23-2. Children or adolescents with both CKD and HTN should be treated to lower 24-hr MAP <50th percentile by ABPM
- B, strong

Sports Participation and Hypertension

- 28. Children and adolescents with HTN may participate in competitive sports once hypertensive target organ effects and cardiovascular risk have been assessed.
- C, moderate
- 29. Children and adolescents with HTN should receive treatment to lower BP below stage 2 thresholds before participation in competitive sports.
- C, moderate

Seattle Children's
UW Medicine

Classification of Various Sports

Joseph TFlynn, MD/ @drjosflynn

Case 3: Outcome

- Clinic BP readings remained at stage 2 HTN level
- Allowed to participate in light workouts with team, but restricted from competition
- Echocardiogram done - normal EF, mild concentric LVH
- Started on therapy with amlodipine 5 mg daily
- Dose increase to 10 mg based on home BP readings
- Follow-up clinic BP 132/78
- Allowed to compete in soccer

Resources

- 2017 AAP CPG
- https://pediatrics.aappublications.org/content/140/3/e20171904.Iong
- NEJM video on BP measurement
- https://www.nejm.org/doi/full/10.1056/NEJMvcm0800157
- 2014AHAPediatric ABPM statement
- https://www.ahajoumals.org/doi/10.1161/HYP. 0000000000000007

Joseph TFly!nn, MD / @drjosflynn

Resources:
Nelson Textbook of Pediatrics
$21^{\text {st }}$ Edition

