ANAEMIAIN PREGNANCY

DR. MOATH SALEH BANI HANI

Classification of Anemia

- Physiological anemia of pregnancy
- Pathological
 - -Deficiency anemia
 - ◆iron deficiency
 - ◆ Folic acid deficiency
 - **→** Vit B₁₂
 - -Haemorrhagic
 - ◆Acute following bleeding in early months or APH
 - **←** Chronic

• • • • •

- Hereditary
 - ◆ Thalassemias
 - ◆ Sickle cell haemoglobinopathies
 - Other haemoglobinopathies
 - Hereditary haemolytic anemias
- ▶ Bone marrow insufficiency
- ► Chronic disease (renal) or neoplasm

Physiological changes in pregnancy

- Plasma volume increases by 50 %
- Red cell mass increases by 25 %
- There is a consequent fall in hb concentration, hct due to haemodilution.
- Mean cell volume increases (MCV) secondary to erythropiosis
- Mean cell hb concentration remains stable (MCHC)
- Serum iron and ferritin concentrations decrease secondary to increase utilization and dilution.
- TOTAL IRON BINDING CAPACITY INCREASE (not usually depend on)

Physiological changes in pregnancy

- Iron requirement increase (due to expanding red cell mass and fetal requirement) from 2.5 mg/day in the 1st trimester to 6.6 mg/day in the 3rd trimester.
- There is a moderate increase in iron absorption.
- Folate requirements increase in pregnancy (due to fetus, placenta, uterus and expanded maternal and red cell mass)
- ► There is no major effect on vitamin b12 stores, although cobalamin levels decrease.

Physiological anemia

- ► AGAIN!.....In pregnancy:
 - -Increase in plasma volume, RBC volume
 - -Marked demand of extra iron specially in the second half which cannot be overcome by diet.

Thus, there always remains a physiological iron deficiency state during prenancy.

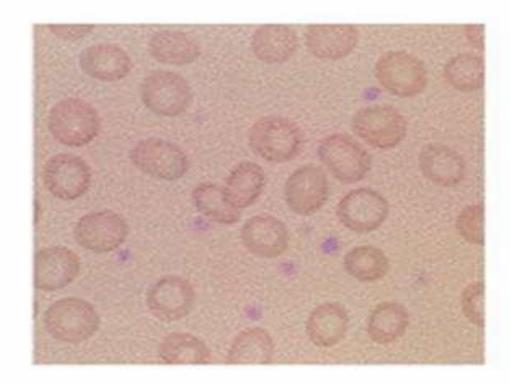
-As a result, there is not only a fall in Hb conc and hematocrit value in the second half of pregnancy, but there is also associated low serum iron.

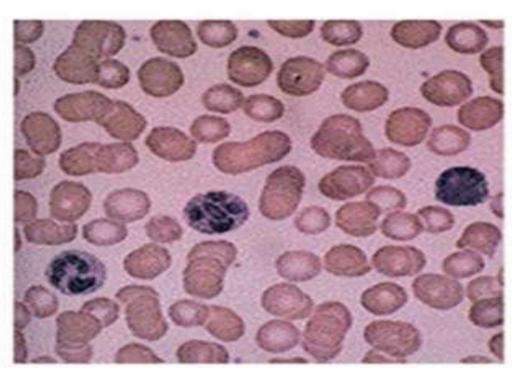
Hematinic requirements in pregnancy

- Iron intake of around 2.5mg/day increasing as pregnancy progresses
- Folate intake of around 400µg/day (average diet supplies 250µg/day)
- B₁₂ intake of 3µg/day

ANEMIA

- ▶ IS A PATHOLOGICAL condition in which the oxygen-carrying capacity of RBC is insufficient to meet the body's need.
- Around 30-50 % of women become anaemic during pregnancy (ida 90%, folate def. 5 %, rarely vit b12 def.)




Criteria for physiological anemia

- ◆ We should exclude other causes of anemia and :
- ◆ Hb 10gm% or less
- ◆ RBC: 3.2 million/mm³
- ◆ PCV: 30%
- Peripheral smear: normal morphology of RBC with central pallor

Iron Deficiency Anemia

anemia

normal blood

Iron deficiency anemia

- Responsible for 80-90 % of causes of non-physiologic anemia during pregnancy
- if iron stores are already depleted (menstruation, recurrent pregnancy, poor intake) anemia will develop rapidly.
- As iron demands exceed supply during pregnancy, ferritin levels falls.
- Decreased hb is a late event in IDA
- Degree of anemia :
- Mild (Between 8 10 gm%)
- Moderate (Less than 8 7gm%)
- Severe (Less than 7gm%)

• • • • •

The best source of iron:

- Lean red meat Chicken
- Turkey Eggs Cereal

The best source of folate:

- Broccoli - Peas - Spinach

Boiling and steaming leads to loss of up to 90% of folate content

Clinical Features of Iron Deficiency Anemia

- Nonspecific symptoms
 - -Pallor
 - Fatigability
 - Palpitations
 - Tachycardia
 - Dyspnea
- Severe anemia
- Angular stomatitis
- Glossitis

Complication of severe anemia

- During pregnancy:
 - → infection
 - → Heart failure
 - → Preterm labour
- ◆ During labor:
 - → PPH
 - → Cardiac failure
 - → Shock
- ◆ Puerperium:
 - → Puerperal sepsis
 - → Subinvolution
 - → Failing lactation

Effects on baby:

- ◆ LBW : increased incidence
- ◆ Intra uterine death

Investigations

Iron deficiency can be present in the absence of anemia.

- **▶** Blood Tests
- -cbc (low hb, reduced mcv, mch, mchc) are not as accurate during preganancy.
- Serum iron
- Serum ferritin (diagnostic test)
- Blood film

Treatment

- ◆ Prophylactic:
 - → Avoidance of frequent child births
 - Supplementary iron therapy
 - Dietary prescription
 - → Adequate treatment
 - ➤ Early detection of falling Hb level is to be made (cbc at booking and at 28 week is recommended)

• • • •

For all pregnant women in the 2nd and 3rd trimester (Prevention)

- 150mg Ferrous Sulfate OD
- 300mg Ferrous Gluconate OD
- Treatment:
- 1g Ferrous sulfate OD

Iron therapy

Oral route: 1st line

- Drawbacks:
 - -Intolerance (GI)
 - -Unpredictable absorption rate
 - Maxiumum increase in hb is .8g/dl per week
 - ► The recommended dose is 100-200 mg of elemental iron per day
 - Ferrouse salt are absorbed better than ferric salts
 - Vit c aid in absorption (advice :fresh orange juice)
- Improvement is usually within 2-3 weeks

• • • •

- → Failure:
 - ◆Improper typing of anemia
 - ◆ Defective absorption
 - ◆ Pt fails to take iron
 - ◆blood loss
- → Contraindication:
 - ◆Intolerance
 - ◆ Severe anemia in advanced pregnancy (NEEDS TIME)

• • • •

Parenteral therapy:

- → Intravenous and Intramuscular
- → Indications:
 - Contraindications of oral therapy
 - ◆ Pt not co-operative to take oral iron

• • • • • •

◆ Intravenous route:

- → Parenteral iron can reduce the need for blood transfusion when oral therapy has failed.
- → Parenteral iron should be avoided in the first trimester .
- → Advantages:
 - ◆ Eliminates repeated and painful intramuscular injections
 - ◆ Treatment completed in a day

.

- Intramuscular therapy:
 - → Total dose to be administered is calculated.
 - → Drawbacks:
 - ◆Painful
 - ◆ Chance of abscess
 - ◆ Reactions

• • • • • • •

- ◆ Blood transfusion:
 - → Limited. But indications are:
 - **◆** PPH
 - Severe anaemia in later months of pregnancy
 - ◆ Refractory anemia
 - → Quality and quantity: fresh. Only packed cell. 80 100 ml at a time
 - → Advantages:
 - Increased oxygen carrying capacity of the blood
 - → Hb may be utilised for the formation of new red cells.
 - Stimulated erythropoiesis
 - ◆ Improvement expected after 3 days

summary

- ▶ At booking (less than 11) : start trial of oral iron
 - *The necessary dose is 100-200 mg/day
 - *Repeat cbc after 3 weeks
 - * If good response keep it for at least 3 monts if no increase send ferritin and consider other DDX
- At booking (less than 7): urgent referral to hematologist don't offer blood transfusion unless symptomatic or bleeding IV IRON (NOT RECOMMENDED IN 1ST TRIMESTER)

summary

- AT 28 WEEK: less than 10.5 we consider it anemic same as 1st trimester but if less than 7 we can consider IV-IRON
- ▶ Post natal: less than 10 we consider it anemic
- 1. 8-10: asymptomatic, offer iron supplement & cbc after 3 months
- Less than 8 :asymptomatic , consider iv iron , recheck 10 days and 3 months
- 3. Less than 7: consider blood transfusion or iv airon

Megaloblastic anemia

► There is derangement in red cell maturation with the production in the bone marrow of abnormal precursors known as megaloblasts due to impaired DNA synthesis.

folate deficiency (5%) Vit B₁₂ deficiency (rare)

In pregnancy, due to folic acid deficiency.

Etiology of Vitamin B12 Deficiency

Dietary Vegans

Malabsorption Pernicious anemia

Partial gastric resection

lleal resection

Intestinal stagnant loop

Chron's disease

Tapeworms

Tropical sprue

Vit. b12 deficiency

Clinical features

- mild maternal anemia
- demyelinating neuropathy

Treatment

- **single dose of 1000 μg** of intramuscular B12
- weekly injections should be employed until anemia resolves and lifelong replacement is often necessary

Folate deficiency anemia

- Most often associated with iron deficiency anemia
- There is a significant increase in folate requirement during pregnancy.
- Folic acid is necessary for closure of neural tube during early fetal development
- Etiology of Folate Deficiency Anemia :

1) Nutritional

Decreased intake, Nausea, vomiting, loss of appetite, Malabsorption

2)Drugs

- Phenytoin & Methotrexate
- 3)Chronic Hemolytic Anemia
- 4) Multiple Gestation

Epidemiology of Folate Deficiency

- **Incidence varies** from 0.5-25% depending on:
- region
- population
- diet
- Takes approximately 18 weeks of folate deficient diet to produce anemia
- Minimum daily requirement is 0.4 mg

Clinical features

- Nausea ,Vomiting and Dirrhoea
- Depression , Pallor ,UTI , Sore mouth or tongue
- ► Fetal complication:
- -NTD
- -prematurity
- -low birth weight
- Complication:
- -Miscarriage
- -Prematurity
- -Abruptio placentae
- -Fetal malformation

Haematological examination and other blood values

- → Hb 10gm%
- Stained blood film: hypersegmentation of the neutrophils, macrocytosis and anisocytosis. Megaloblasts.
- → MCV- 100 µm³ (could be associated with IDA leading to mask this)
- ◆ MCH —high, MCHC —normal
- Serum iron is normal or high
- ◆ Serum folate 3ng/ml
- ◆ Serum B₁₂ level below <90 pg/ml (co-existing)</p>
- Bone marrow megaloblastic erythropoiesis

Management

- Investigations
- Serum folate and Blood smear
- Prevention
- **0.4-1 mg folic acid PO daily** for 1-3 months preconceptually and throughout the 1st trimester
- 4 mg folic acid/ day in patients with past history of NTD

HAEMOGLOBINOPATHIES

SICKLE CELL ANAEMIA

► Hereditary disorders in which the red cells contain Hb-S. caused by the production of defective beta chain due to single amino acid shift in the beta-globin gene from glutamine to valine.

▶ Pathophysiology:

- -Red cells with HbS in oxygenated state behave normally but in the deoxygenated state it aggregates, polymerises and distort the red cells to sickle.
- -These sickle shaped cells block the microcirculation due to their rigid structure.

• • •

Diagnosis: Hb electrophoresis & blood film

Sickling crisis; RBCs become *sickle-shaped* and occlude vessels causing widespread **vascular damage**, *severe pain* and *hemolytic anemia*

- -vaso-occlusion crisis
- -aplastic crisis (parvovirus 19)
- -acute chest syndrome
- -splenic sequestration

Effects on pregnancy

- Increased incidence of abortion, prematurity, IUGR and fetal loss.
- Perinatal mortality is high.
- Preclampsia, postpartum haemorrahage, thromboembolic events and infection is increased.

Effects on the disease

- There is chance of sickle cell crisis which usually occurs in the last trimester.
- ◆ Hemolytic crisis
- ◆ Painful crisis.

Management

- Preconceptional counselling
- During pregnancy: antenatal supervision, regular blood transfusion at 6 weeks interval is indicated in certain cases.
- Contraception: sterilization, oral pill, barrier method is ideal.
- ► Folate supplements
- Prompt treatment of infections & vaccination should be uptodate.
- ▶ Iron overload aggressively treated before pregnancy .

Thalassemia

- Commonly found genetic disorders of the blood.
- Basic defect is a reduced rate of globin chain synthesis.
- As a result, the red cells being formed with an inadequate haemoglobin content.
- ◆ Types alpha and beta (depending upon the chain)

Alpha thalassemia

- ▶ A-peptide chain production is controlled by 4 genes, located on chromosome 16. Depending upon the degree of deficient synthesis 4 clinical types.
- Mutation of one gene: no clinical or laboratory abnormalities. Silent carrier
- ► Mutation in 2 4 genes: minor. Often goes un-recognised and pregnancy is well tolerated.
- \blacktriangleright Mutation in 3 4 genes: Hb H disease. \rightarrow
- hemolytic anaemia.
- Mutation in all four genes: major. No alpha globin chain. Fetus dies either in utero or soon after birth.

Beta Thalassemia

- beta chain production is directed by 2 genes one on each copy of chromosome 11.
- Major when mutation affect both the genes. red cell destruction- no erythropoiesis – blood transfusion necessary for survival.
- Minor mutation of one gene. can tolerate pregnancy oral folic acid supplementation is continued.

• • • •

Alpha Thalassemia

- major form is incompatible with life and pregnancy ends prematurely in hydrops fetalis

Beta Thalassemia

- Folate supplements should be given
- Blood transfusion is indicated to achieve adequate hemoglobin for delivery at term

Key points management

- Partner testing and prenatal diagnosis
- ► Echo to assess ventricular function
- Monitor full blood count and ferritin. Transfer as required.
- Serial growth scan (IUGR, late pregnancy loss)
- ▶ Folic acid supplement
- Vaccines & antibiotics.

Thank you

>

