Breast Cancer

Premalignant and Malignant Lesions

Dr. Mahmoud Al-Balas. MBBs, MSc

Consultant Breast Oncoplastic and Reconstructive Surgery Assistant Professor of Surgery - The Hashemite University

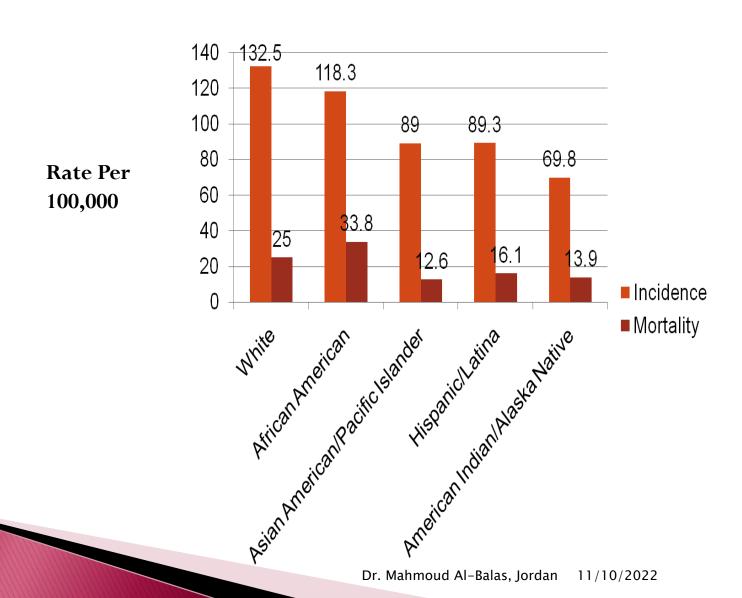
Impact?

- With 1 million new cases in the world each year, breast cancer is the most common malignancy in women and comprises 18% of all women's cancers.
- Breast cancer incidence in women in the United States is 1 in 8 (about 13%). Women have a 3% chance of breast cancer causing their death.
- For women in the U.S., breast cancer death rates are higher than those for any other cancer besides lung cancer.
- The American Cancer Society estimates that each year, about 2000 new cases of invasive breast cancer are diagnosed in men.
- It is estimated that about \$8.1 billion is spent each year on breast cancer treatment in the U.S.

Breast cancer in Jordan - Facts

- ▶ BC accounts for the highest incidence of all cancers in Jordan (36.7%)
- The leading cause of cancer deaths among Jordanian women
- Ranks number one among the five most common cancers affecting all Jordanians (King Hussein Cancer Center (KHCC), 2004
- The median age of BC among Jordanian women is 51 years (vs. 61 in USA)
- ▶ (33.9%) of the newly diagnosed Jordanian women with BC, in 2001, were between 30-39 years old (KHCC, 2004)
- BC incidence rates in Jordan are increasing at a rate of 4% per year
- A national Jordanian program titled, the Jordan Health Cancer Program, has been in effect since 2005

Epidemiology:


- Over 75% of women who are diagnosed with breast cancer are age 50 or older.
- Over 232,000 cases were reported in 2013, > 99% in women.
- The five-year relative survival rate is now 98 percent for women with breast cancer caught before it spreads beyond the breast (compared to 72 percent in 1982).
- Breast cancer incidence is greater in women of higher socio-economic background.
 - Life style differences like number of pregnancies and age at first childbirth.
- Death rates have been decreasing since 1990.
 - Advances in treatment, earlier detection through screening, and increased awareness.

The decrease in incidence rates that occurs in women 80 years of age and older may reflect lower rates of screening, the detection of cancers by mammography before 80 years of age, and/or incomplete detection

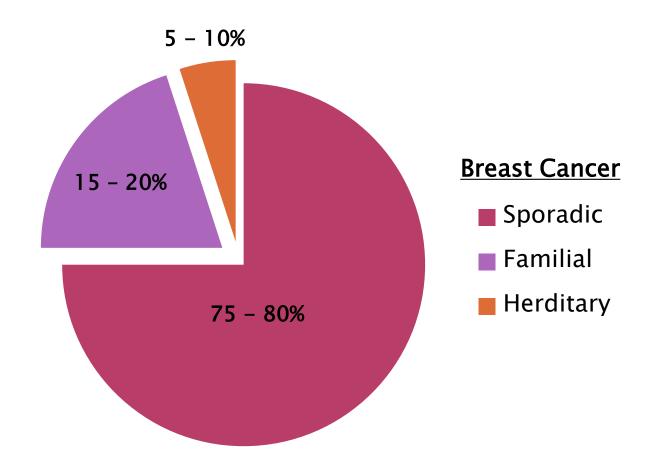
Incidence and Mortality of Female Breast Cancer Based on Race and Ethnicity in the U.S.

- About 90% of breast cancers are due to genetic abnormalities that happen as a result of the aging process and life in general, not to inherited mutations.
- Lifetime risk for developing BC is 12.28% (1 in 8 women)

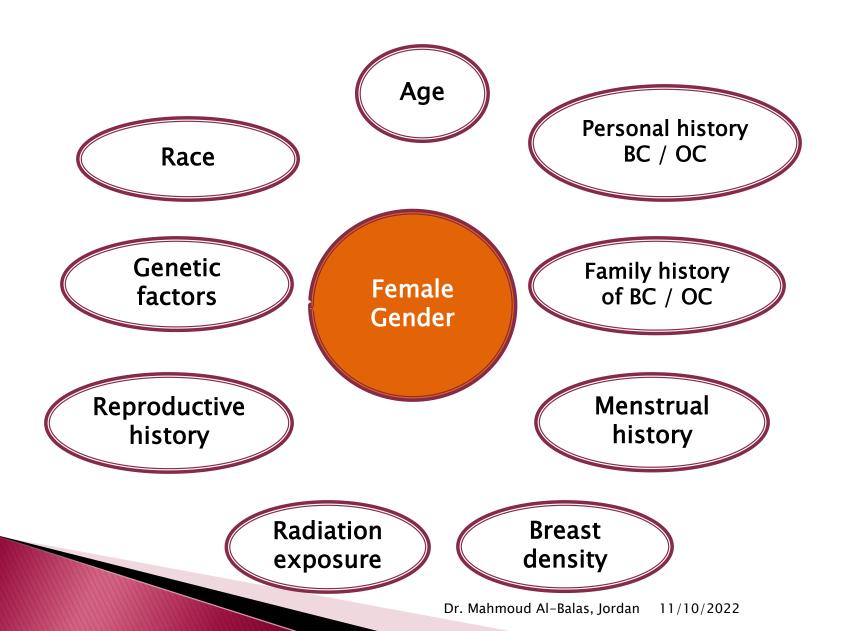
Table 5. Age-specific Probabilities of Developing Invasive Female Breast Cancer*

cancer in the next 10 years is:†	or 1 in:
0.1%	1,674
0.4%	225
1.4%	69
2.3%	44
3.5%	29
3.9%	26
12.3%	8
	0.1% 0.4% 1.4% 2.3% 3.5% 3.9%

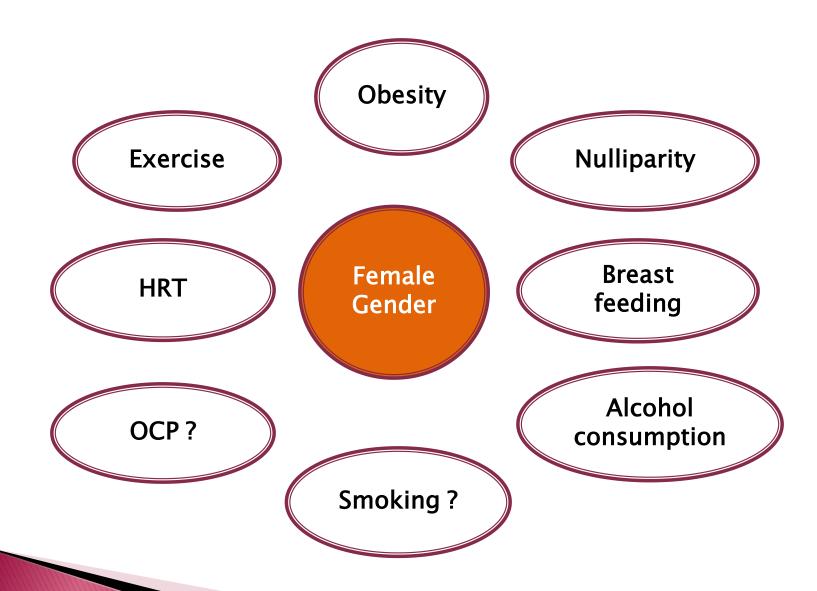
^{*}Among those free of cancer at beginning of age interval. Based on cases diagnosed 2010-2012. Percentages and "1 in" numbers may not be numerically equivalent due to rounding.


Source: 18 SEER Registries, National Cancer Institute. Probabilities derived using NCI DevCan Software, Version 6.7.3.

American Cancer Society, Inc., Surveillance Research, 2015


Breast Cancer:

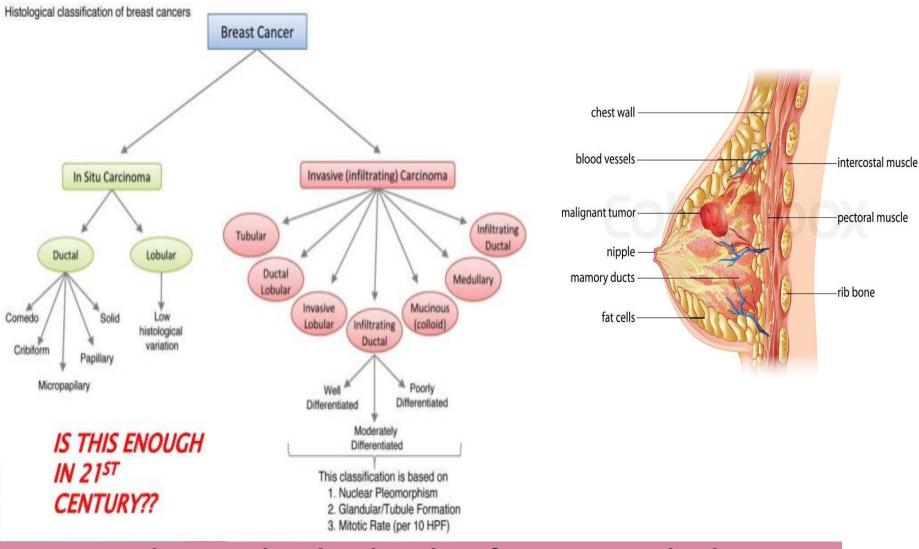
Risk Factors



Non modifiable risk factors

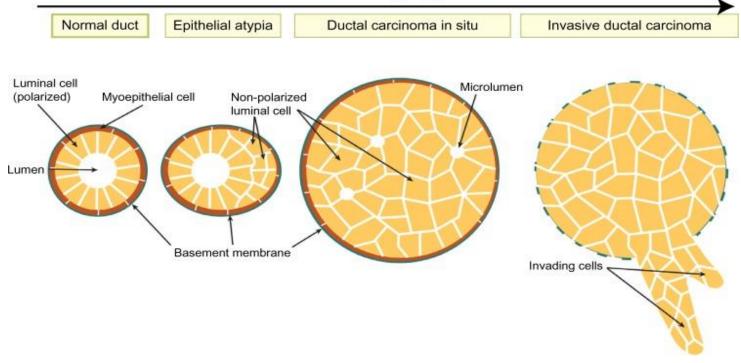
Modifiable risk factors

Factors that Increase the Relative Risk (RR) for Breast Cancer in Women


RR>4.0	 □ Female □ Age (65+) □ Inherited genetic mutations associated with breast cancer such as BRCA1/BRCA2 □ Two or more first-degree relatives with breast cancer diagnosed at an early age □ Personal history of breast cancer □ Biopsy-confirmed atypical hyperplasia □ DCIS, LCIS
2.1 <rr<4.0< th=""><th> One first-degree relative with breast cancer High-dose radiation to chest High bone density (post-menopausal) Breast density > 50% </th></rr<4.0<>	 One first-degree relative with breast cancer High-dose radiation to chest High bone density (post-menopausal) Breast density > 50%
1.1 <rr<2.0< th=""><th>Factors affecting circulating hormones: Late age at first full-term pregnancy (>30 yrs) Early menarche(<12 yrs) Late menopause No full-term pregnancies No breastfeeding Recent oral contraceptive use Recent and long-term hormone replacement therapy Obesity Breast density 26–50% Other factors: Personal history of endometrium, ovary or colon cancer Alcohol consumption Height (tall) High socioeconomic status Jewish heritage Dr. Mahmoud Al-Balas, Jordan 11/10/2022</th></rr<2.0<>	Factors affecting circulating hormones: Late age at first full-term pregnancy (>30 yrs) Early menarche(<12 yrs) Late menopause No full-term pregnancies No breastfeeding Recent oral contraceptive use Recent and long-term hormone replacement therapy Obesity Breast density 26–50% Other factors: Personal history of endometrium, ovary or colon cancer Alcohol consumption Height (tall) High socioeconomic status Jewish heritage Dr. Mahmoud Al-Balas, Jordan 11/10/2022

Classification of Breast Cancer

- Breast cancer is unanimously considered a highly heterogeneous disease under several distinct viewpoints.
- Different types of this neoplasm exhibit variable histopathological and biological features, different clinical outcome and different response to systemic intervention.
- Breast cancer cannot be viewed as a single clinicopathological entity, but it must be necessarily dissected into a number of more homogeneous entities
- Suitable classification of any disease has to be scientifically sound, clinically useful, easily applicable and widely reproducible


- Histopathologic Classification
 - ☐ BIOLOGIC CLASSIFICATION
 - ☐ MOLECULAR CLASSIFICATION

<u>But</u> Biologic and Molecular Classification provides better understanding for the behavior and treatment of breast cancer

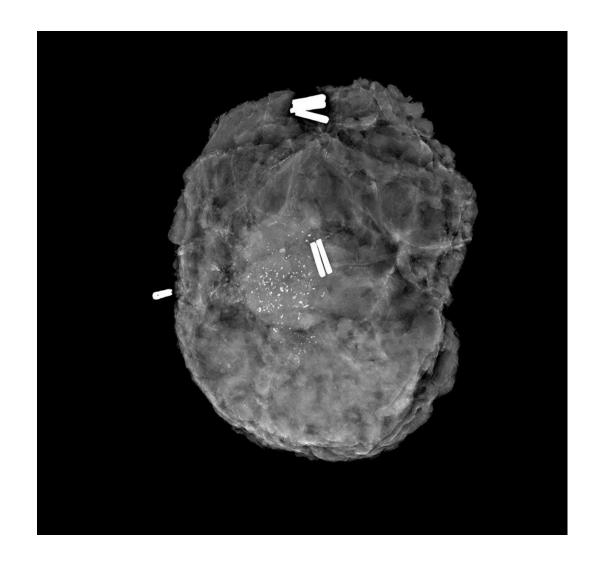
Breast cancer progression

Carcinoma in Situ

Ductal Proliferation

- They are arise and confined to the breast ducts (duct-lobular) unit.
- Benign or malignant lesions.
- Divided into 2 large groups:
 - 1.Intraductal benign proliferation (usual ductal hyperplasia) (ductal hyperplasia without atypia)
 - 2.Ductal intraepithelial neoplasia (DIN) → ADH + DCIS

Proliferative Ductal Lesions

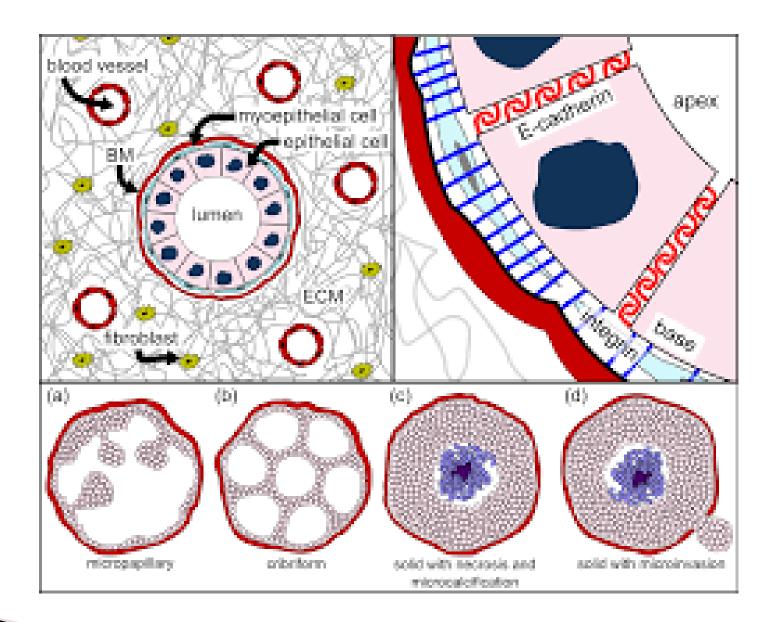

Old terminology	<u>New terminology</u>
Flat epithelial atypia	DIN1a
Atypical ductal hyperplasia	DIN1b
Low grade (G1) DCIS	DIN1c
Intermediate grade (G2) DCIS	DIN2
High grade (G3) DCIS	DIN3

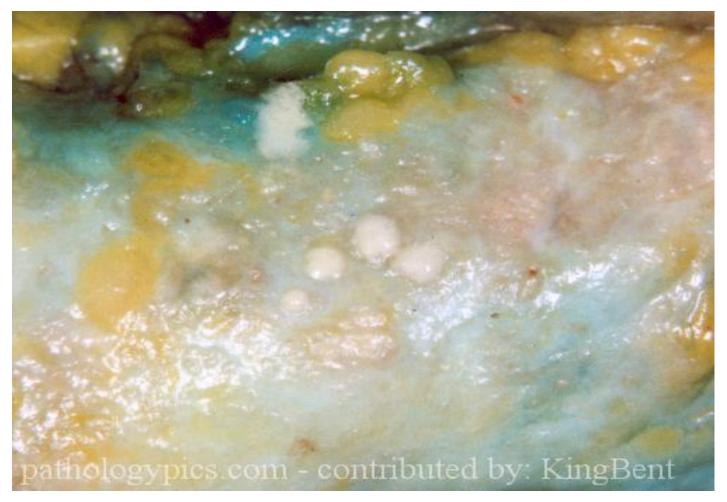
A correlation between ductal proliferative lesions and risk of breast cancer

UDH	1.5-2 fold
ADH	4-5 folds
DCIS	9-10 folds

DCIS

- Malignant proliferation of epithelial cells confined to ductal-lobular system.
- No invasion into surrounding stroma.
- ▶ 20-25% of newly diagnosed breast cancer in western countries.
- Considered as a non-obligate precursor for invasive carcinoma
- ▶ Incidence →
 - 1975; 1.9/100,000
 - 2005; 33/100,000




Biology and classification

- It is considered a heterogeneous group of lesions with variable malignant potential.
- The average estimate of untreated DCIS to develop invasive carcinoma about 43%.
- Architectural classification:

 - Non-Comedo:
 - Cribriform

 radially oriented neoplastic cells forming glandular lamina
 - Papillary → large papillae with fibrovascular stalk
 - Solid → ducts filled with neoplastic cells

Comedo DCIS and isosulfan blue staining from sentinel lymph node mapping.

The cut section of the biopsy is oozing necrotic material from multiple ducts.

DCIS Grade	LOW	Intermediate	High
Cells	Small – monomorphic	Mild to moderate Variable in shape, size, orientation	Highly Atypical cells
Nucleus	Small - uniform	Variable	Large – irregular Pleomorphic
Chromatin	Dispersed	Coarse	Clumped
Nucleoli	Not evident	Variably prominent	Very prominent
Mitosis	Rare	May be present	Common
Necrosis (Comedo)	Usually absent	May be present	Punctate or Comedo present
Intraluminal microcalcification	May be present	Frequently present Dr. Mahmoud Al-Balas, Jordan	Very common Intraluminal debris

Features of DCIS

- ▶ Grossly → no special characteristics
- Specimen radiography can be utilized to localize microcalcifications
- Usually confined to the ducts
- High grade can extend into lobules (lobular cancerization) and can harbor foci of invasive carcinoma.
- Architecture patterns → comedo cribriform solid micropapillary - papillary - mixed
- Comedo Type → Comedo necrosis at cut surface of the ducts

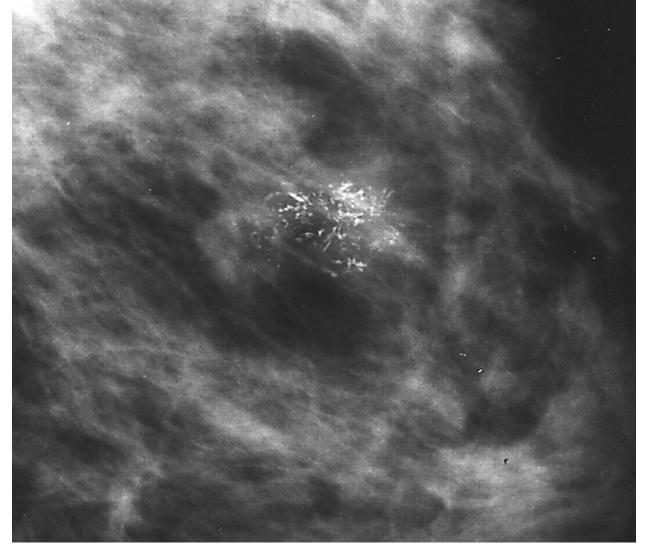
Comedo DCIS → more aggressive, higher nuclear grade, aneuploidy, higher Ki67, high HER2 amplification, high protein overexpression.

 Micropapillary DCIS is more associated with extensive distribution involving more than one quadrant.

DCIS	ER / PR	HER2 neu
Low grade	+++	Negative
High grade	- (43%)	Positive

- Recurrence / invasive cancer progression in:
 - Young age
 - large size High grade
 - Comedo
 - Positive margins

Diagnosis


Clinical Presentation

Radiologic Assessment

Diagnostic Biopsy

Clinical Presentation

- DCIS is mostly a screening mammography detected form.
- Palpable breast mass:
 - As early as 1990, 30% of cases were manifested a palpable masses
 - Nowadays, less than 10% present with a mass.
- Pathological nipple discharge.
- Incidental finding on breast biopsy.

Typically, DCIS microcalcifications are pleomorphic, variable in size, density, grouped in segmental or linear arrangements reflecting their arrangements in ducts.

Mammography & Ultrasound

Mammogram:

- Microcalcifications → most common mammographic finding
- Soft tissue density or asymmetry
- Magnification views more accurately predict the extent of disease.
- Can underestimate the pathological extent of the disease especially with micropapillary DCIS

Microcalcifications characteristics of DCIS High nuclear Grade Comedo DCIS Low nuclear grade Micropapillary / Cribriform Microcalcifications Comedo DCIS Fine granular microcalcifications

MRI

- The gold standard for radiologic assessment of DCIS.
- Not routinely employed in preoperative assessment of DCIS.
 - Cost.
 - Accessibility.
- Higher sensitivity than mammography for DCIS.
 - Can over estimate DCIS.
 - Higher false positive.
 - Higher unnecessary biopsies.
- Can detect contralateral breast cancer in DCIS patients.
 - Sensitivity → 71%
 - Specificity → 90%
- May lead to overtreatment and increase the performance of mastectomies.

Pathology

- Malignant proliferation of epithelial cells confined to ductallobular system.
- Within ductal lumen, No invasion into surrounding stroma.
- Lesions can be heterogeneous, variable histologic architecture, molecular and cellular characteristics, clinical behavior.
- Stromal changes → angiogenesis, fibroblast proliferation, lymphocytes infiltration.
- Progression sequence as below is supposed:
 - \circ ADH \rightarrow \rightarrow DCIS \rightarrow \rightarrow IDC
 - Cause ?! Genetic defect ... P53 mutation
 - Other genes of cell adhesion, signaling, motility, angiogenesis, ECM formation.

Classification

- No single classification system is universally accepted.
- Subtypes:
 - Comedo
 - Non–Comedo
 - Cribriform
 - Solid
 - Papillary
 - Micropapillary
- Nuclear Grading → low intermediate high

Multifocality Vs. Multicentricity

▶ Multifocality →

- DCIS in 2 or more foci in same breast quadrant separated by 5 mm.
- These foci found to originate from the same focus

▶ Multicentricity →

 Separate discontinuous foci of DCIS outside of the index breast quadrant.

Note > Recurrence most occur in the same quadrant as the index lesion

DCIS with microinvasion

- Microinvasion: invasion of breast cancer cells through the BM at one or more foci, non of which exceeding a dimension of 1 mm.
- ▶ DCIS microinvasion → AJCC staging "T1mic"
- DCIS features suggestive of having DCISM:
 - Size > 25 mm (29% vs. 2% if < 25 mm)
 - High Grade
 - Comedo DCIS
 - DCIS with palpable mass
 - DCIS with nipple discharge
- DCISM:
 - ∘ 5–10% of DCIS
 - ALN metastasis. 0 28%
 - Shorter distant metastasis free survival rate (91% vs. 98%)
 - Shorter overall survival (88.4% vs. 96.5%)

Prognosis

- ▶ DCIS specific mortality is very low (1% 2.6%)
- Aim of treatment is to maximize local control with the least aggressive treatment.
- ▶ Local recurrence range from 11–31%
 - At 8 years follow up after BCS + RTH:
 - High Grade + Comedo → 20% LR
 - Low Grade + non Comedo → 5%
- Mortality is related to
 - presence if an invasive cancer not recognized at time of diagnosis
 - Recurrence as IDC in 50% of cases

DCIS Treatment

- Surgery
- Radiotherapy
- Hormonal therapy

Ductal Carcinoma in Situ (DCIS)

- Surgery:
 - Mastectomy

Vs.

- Wide Local Excision (BCS)
 - Circumferential margin should be at least 2 mm

Conservative treatment of dcis

Treatment	ВСТ	BCT + Radiotherapy
10 year cumulative risk for ipsilateral Recurrence DCIS or IDC	28.1%	12.9%

- 50 % of recurrences after BCT are IDC and up to 20% are metastatic at presentation.
- Radiotherapy for low risk?
 (negative margins, low grade and size)

Axillary LN Assessment

- Usually, there is no need to perform SLNB
- Indications of SLNB in patients with DCIS:
 - Large diffuse DCIS that require mastectomy
 - High grade DCIS
 - High risk mammographic pattern
 - Extension above 5 cm

Extent of the Disease

- Precise preoperative assessment of DCIS extension remains difficult.
- Traditional evaluation proved to be unreliable, new diagnostic tools have limitations.
- MRI showed high sensitivity in detecting invasive disease, it has high negative predictive value (NPP)
- MRI sensitivity for DCIS range from 40-80%, it can also over or underestimate the involvement.

Extent of the Disease

- MRI can't show all microcalcifications visible on mammogram also mammogram can't show all lesions demonstrated on MRI.
- So → MRI and mammogram as complementary for DCIS assessment.
- Overall MRI sensitivity for high grade DCIS is more than mammogram.

Intraoperative localization

Methods of localization:

- Methylene blue dye injection into the lesion
 - Diffuse easily in breast tissue (within hours)
 - Short interval between localization and surgery
- vegetal carbon injection
 - Stain tissue black, not diffuse into surrounding tissue
 - Localization can be days or weeks before surgery
 - Low cost, easy
 - Difficult to follow in cases of multifocal lesions

- Hooked wire localization
 - Useful for multifocal localizations
 - Disadvantages :
 - Wire migration during patient's position changes and during surgery
 - High positive microscopic margins following excision
 - Difficult to localize small lesions due to wire thickness
 - Remote skin incision for insertion
- Radioguided localization (ROLL)
 - Depends on Tc injection and detecting it preoperatively, intraoperative gamma probe and postoperative imaging

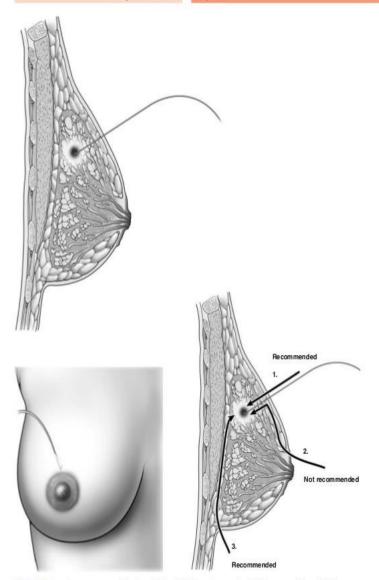
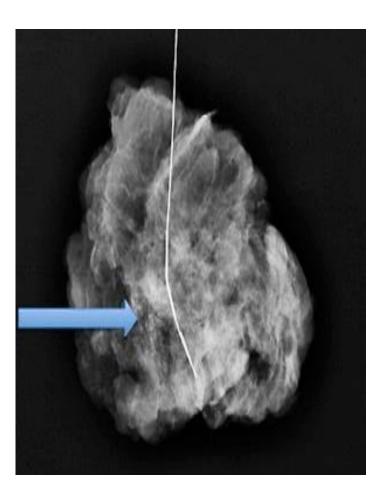
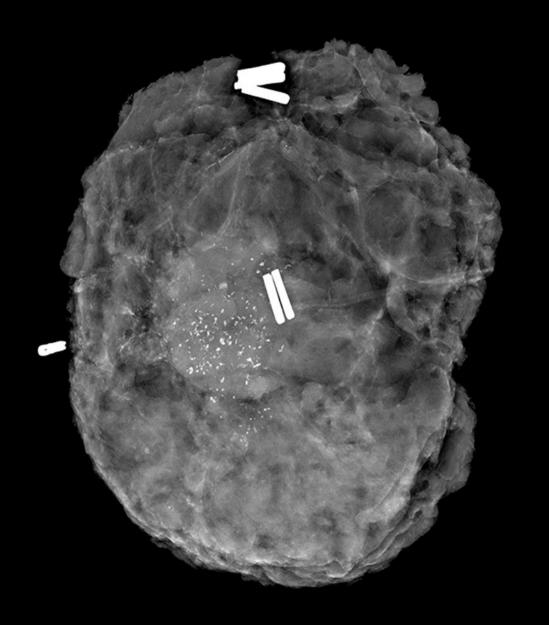




Fig. 3.23. Guidance for correct approach during needle-localized biopsy. The posterior glandular approach (i on right) is recommended, whereas periareolar (2 on right) is not recommended. Inframammary approach (i) on right) is only recommended if the tumor is deeply located

Radiotherapy

- Radiotherapy decreased the loco-regional recurrence after BCS by 50%.
- Whole breast radiation
 - 5-6 weeks duration
- Partial-Breast irradiation
 - High dose radiation over 4–5 days

Endocrine Therapy

- National Comprehensive Cancer Network guidelines:
 - 5 years Tamoxifen 20mg/d for ER+ DCIS
 - 59% reduction on relative risk of BC vs. no tamoxifen.
- International Breast
 Cancer Intervention Study
 IBIS-II
 - Anastrozole decreased cumulative incidence of BC by 50% in postmenopausal women

	BCS + Radiotherapy + Tamoxifen	BCS + Radiotherapy + Placebo
Ipsilateral IBC	8.5%	10%
Contralateral non IBC & IBC	7.3%	10.8%

Surveillance

- Annual physical exam and Annual Mammogram.
- Predictors of local relapse:
 - Age < 50 years.
 - Strong FH
 - Size > 3 cm
 - High nuclear grade
 - Comedo necrosis
 - Positive margins

Lobular Neoplasia

Lobular neoplasia

- Atypical Lobular Hyperplasia (ALH)
- Classic Lobular Carcinoma in Situ (cLCIS)
- Pleomorphic Lobular Carcinoma in Situ (pLCIS)

Lobular carcinoma in situ

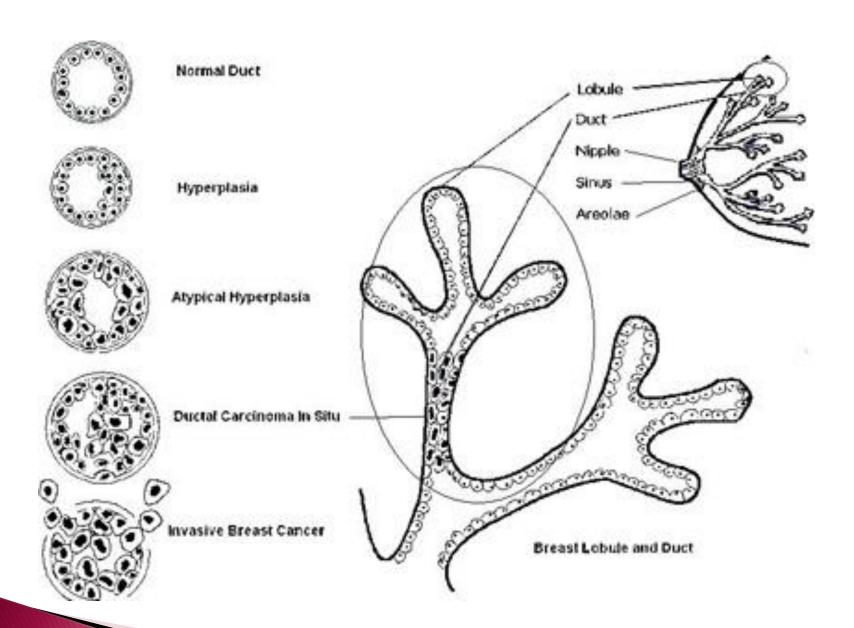
- First described in 1940s by foote and stewart.
- A high risk indicator lesion for breast cancer development.
- It doesn't itself progress to malignancy?
 - There is increasing evidence that LCIS may also act as a non-obligate precursor in the progression to invasive carcinoma

- Incidence ?
 - Difficult to assess →
 - it lacks specific clinical abnormalities.
 - Always as incidental finding (0.5-3.9% of breast biopsy specimens)
- ▶ 15% absolute risk at 15 years
 - Significant number develop BC more than 15 years
- LIN has been linked to increased risk for subsequent carcinoma in both breast
 - higher in ipsilateral breast (no significant difference than contralateral side)

	ALH	LCIS
Breast Cancer RR	4-5 folds	8-9 folds

LCIS

- ▶ Mean age of Dx is between 40 & 50 years (10-15 years younger than invasive breast cancer).
- In women > 50 years → incidence of LCIS increased concurrently with incidence of ILC
 - Increase use of mammography, MRI
 - Use of hormone replacement
 - Improved molecular diagnosis
- In women < 50 years → incidence of ILC is not observed to increase with LCIS

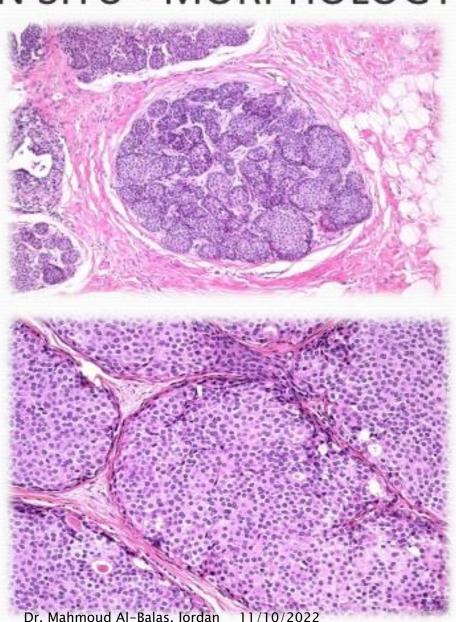

Risk Assessment

- ▶ LCIS \rightarrow 8–9 folds higher risk than general population.
- Multifocal in 50%
- Contralateral involvement in 30% of patients.
- Subsequent breast cancer development mostly IDC NST.
 - ILC represent 45% of tumors in patients with LIN
- ▶ In 90% of ILC, LCIS is identified.
- Time interval between LCIS and cancer development is 10– 15 years

Histopathology

- LN (ALH , LCIS) [page and colleagues criteria]
 - Small, round, monomorphic cells
 - Cells are dyshesive with an increased nuclear to cytoplasmic ratio.
 - Presence of intracytoplasmic vacuoles in LCIS
- ▶ Both ALH and LCIS can co-exist in the same specimen

	ALH	LCIS
Acini involvement in the affected TDLU are involved	< 50%	> 50%
Cells in Lumen	Partially occluding lumen	Lumen completely occluded
Acini Distention	Not distended	Distended



ALH and cLCIS

- More common in premenopausal women
- ▶ Found in 0.5–4% of otherwise benign breast biopsies.
- Multicentricity in 85% of patients
- ▶ Bilateral in 30–67% of cases
- Arise in terminal duct lobular unit (TDLU)
- ▶ Both are negative for E-Cadherin (cell surface adhesion molecule) in 85% of cases

LOBULAR CARCINOMA IN SITU - MORPHOLOGY

- Dyscohesive round cells with oval or round nuclei and small nucleoli. Absence of atypia, pleomorphism, mitoti activity, necrosis.
- Involved acini recognizable as lobules.
- Mucin-positive signet-ring cells.
- ER and PR +ve.

Classification of involved malignant cells

- ▶ Type A \rightarrow
 - Bland nuclei
 - Scant cytoplasm
- \rightarrow Type B \rightarrow
 - Mild to moderate nuclear atypia
 - More cytoplasm than type A cells
 - Larger than TypeA cells

Lesions that are composed of either cells types are referred to as 'classic' lobular neoplasia.

LCIS Variants

- Pleomorphic LCIS
- Pleomorphic apocrine LCIS
- LCIS with comedo necrosis
- Carcinoma in situ with mixed ductal and lobular features

Pleomorphic LCIS

- First described as distinct entity in 1992 by Eusebi et al.
- Most widely recognized variant of LCIS
- Incidence less than ALH, cLCIS
- Common in older women than ALH, cLCIS
- Cellular Features:
 - Dyshesive cells (as cLCIS)
 - Higher degree of nuclear pleomorphisms
 - Abundant cytoplasm

Pleomorphic lobular carcinoma in situ

- Histologic features similar to high grade DCIS
 - Large nucleated nuclei
 - Marked pleomorphism
 - Numerous mitosis
 - Comedo necrosis centrally
 - Microcalcification
- Central, comedo necrosis and microcalcifications are quiet common (can be confused with DCIS)
- Occasionally, cytoplasm is eosinophilic with fine granules → pleomorphic apocrine LCIS
- Intracytoplasmic vacuoles can present (signet ring cell appearance)
- Negative for E-Cadherin as ALH, cLCIS

LCIS with comedo necrosis

- Have feature of classic LCIS (small, uniform cells with deshesive growth pattern) plus central area of comedo necrosis.
- Microcalcifications are often associated with areas of necrosis.
- It has strong association with invasive carcinoma (i.e. either purer lobular carcinoma or with focal lobular features)

Carcinoma in situ with mixed ductal and lobular features

- Resemble both LCIS and DCIS
- Cells are small monotonous but are more cohesive than LCIS cells.
- ► E-cadherin immunohistochemistry may show heterogeneous staining (may be only positive, only negative or both positive and negative cells in the same lobular unit)

Immunophenotype

	cLCIS	cLCIS with comedo necrosis	pLCIS
ER / PR	Positive	Positive	Positive
E – cadherin	Negative	Negative	Negative
HER2 overexpression	Negative	Negative	Might be Positive
P53 mutation	Negative	Negative	Might be Positive
Ki67	Low	Low	Moderate / High

Antibody p120-catenin diffusely localize to cytoplasm in LN while remain localized to membrane in ductal lesions (Dabbs et al.)

pLCIS is often positive with gross cystic disease fluid protein-15, specially if It is with apocrine features.

	cLCIS	pLCIS
ER	+	- (34%)
PR	+	- (38%)
HER2	_	High Positive in 15%
Ki67	Lower	Higher
P53	Less frequent	More frequent
E-Cadherin	Negative	Negative
Comedo necrosis	Absent	Common (might be confused with DCIS)

Molecular pathology

E-cadherin

- Cell surface adhesion molecule.
- A product of CDH1 gene.
- Expressed on normal epithelial cells and span the cell membrane.
- Form dimers with E-cadherin on other cells
- Intracytoplasmic part binds to p120-catenin
- When E-cadherin lost →
 - Loss of adhesion between cells
 - p120-catenin accumulate in the cytoplasm and activate Rho-GTPases and increase cellular motility.

PLCIS	DCIS
 Loss of E-cadherin 	 Positive of E-cadherin
 Intracytoplasmic p120– catenin 	• Epithelial p120-catenin
 Loss of High M. weight keratins CK 5/6, 14, 17 	• Positive for CK 5/6, 14, 17

Clinical Presentation

- Usually no clinical features or mammographic changes.
- Mostly as an incidental finding during core needle biopsy or lumpectomy.
- Predominantly in premenopausal women
- Microcalcifications can be detected in mammography.
 - Punctate calcifications → cLCIS
 - Large, clustered calcifications → pLCIS

Note → if LCIS cannot be differentiated from DCIS ... patient should be treated as DCIS.

Surgical Treatment

- Incidental LCIS by percutaneous biopsy mandates performing surgical excisional biopsy.
- The aim of the excisional biopsy is to role out synchronous invasive carcinoma and DCIS.
- Preoperative placement of titanium clip in the index site to facilitate post operative identification of excised specimen.
- Preoperative localization techniques:
 - Wire guided localization.
 - Radioactive seed localization.
- Post excisional specimen mammography for detecting a clip within excised specimen.

Lobular neoplasia in core biopsies, what is the next step?

- Variable upgrade rate of LN into DCIS and/or IBC.
 - Some recent studies showed DCIS or invasive cancer in 10-27% of LN cases in core biopsies (small, retrospective studies).
 - Other studies (Hwang et. al, Renshaw et.al, Nagi et. al)
 - Upgrade rate in subsequent excisional biopsy (1-3%)
 - 30% developed DCIS or IBC in ipsilateral or contralateral breast and many of them in sites not related to previous core biopsy.

Microscopic Margins assessment

Microscopically negative margins:

180 patients with margins negative after LCIS excision 12 years follow up			
Ipsilateral BC	Contralateral BC	Ipsilateral IBC	Contralateral IBC
14.4%	7.8%	5.6%	5.6% (later than ipsilateral IBC)

• Microscopically positive margins:

2894 patients with BCS for IBC or DCIS 10% had synchronous LCIS (5 years follow up)				
Crude LR with LCIS		Crude L	R without LCIS	
4.5%			3.8%	
LR +ve margins	LR LCIS +ve not at margin	LR LCIS -ve		
6%	1%	2%		

- for Classis LCIS → no need for re-excision to achieve negative margins.
- For Pleomorphic LCIS → re-excision to achieve negative margins is indicated.

Bilateral Risk Reducing Mastectomy

 This approach is reserved for patients with additional risks for development of BC

Or

- For patients with significant anxiety regarding observation and/or chemoprevention
- NSM with immediate reconstruction is ideal for carefully selected women.

Note → It reduces but doesn't eliminate the risk of BC development.

Risk reducing endocrine therapy

- In NSABP p1 trial → tamoxifen reduced the incidence of invasive BC by 56%.
 - 6.2% of patients had LCIS
 - The annual hazard for LCIS patients to develop BC was 5.69/1000 for those on Tamoxifen vs. 12.99/1000 for those without Tamoxifen
- In NSABP p2 trial → no difference in chemoprevention between tamoxifen and Raloxifene in postmenopausal women.

Excisional Biopsy for LN, when to do?

- Presence of another lesion necessitates proceeding to excisional biopsy (e.g. ADH)
- Discordance between radiological and pathological findings
- Associated mass or architectural distortion
- Indeterminate features between ductal and lobular features
- Pleomorphic or other variants of LCIS

Radiation Therapy

- No need for adjuvant radiotherapy.
- Only indicated if associated with DCIS or Invasive BC.

Surveillance

- Annual bilateral breast physical exam.
- Annual bilateral mammography.
- Screening US for LCIS patients has high false positive result.
- Annual Mammography and MRI has similar detection rate (13%).
- ▶ The routine use for MRI in LCIS is not recommended.

Invasive Breast Cancer

Breast cancer progression

Luminal cell (polarized) Myoepithelial cell Non-polarized luminal cell

Lumen Basement membrane

Ductal carcinoma in situ Invasive ductal carcinoma

Microlumen Invading cells

Molecular subtype	Biomarker profile
Luminal A	ER+ and/or PR+, HER2-, and low Ki67 (<14%)
Luminal B	ER+ and/or PR+ and HER2+ (luminal-HER2 group) ER+ and/or PR+, HER2-, and high Ki67 (>14%)
HER2 enriched	ER-, PR-, and HER2+
Basal-like	ER-, PR-, HER2-, and CK5/6 and/or EGFR+

Molecular subtypes

Gene expression

Clinical features

Treatment

outcome

response and

pattern

☐ High expression of hormone receptors and associated genes (luminal A>luminal B)

 $\square \sim 70\%$ of invasive breast

☐ Luminal B tend to be higher

histological grade than

☐ Some overexpress HER2

☐ Respond to endocrine therapy (but response to tamoxifen

and aromatase inhibitors may

be different for luminal A and

variable (greater in luminal B

☐ Prognosis better for luminal A

☐ Response to chemotherapy

than in luminal A)

than luminal B

cancers

luminal A

(luminal B)

luminal B)

ER/PR positive

Luminal

☐ High expression of HER2 and other genes in amplicon ☐ Low expression of ER and associated genes

HER2

cancers

ER/PR negative

and node positive

☐ More likely to be high grade

☐ Respond to trastuzumab

☐ Respond to anthracycline-

☐ Generally poor prognosis

based chemotherapy

(Herceptin)

☐ High expression of basal epithelial genes, basal cvtokeratins ☐ Low expression of ER and associated genes ☐ Low expression of HER2 $\square \sim 15\%$ of invasive breast cancers $\square \sim 15\%$ of invasive breast ☐ Most ER/PR/HER2 negative ('triple negative')

Basal

☐ BRCA1 dysfunction (germline,

☐ Particularly common in African-

sporadic)

(Herceptin)

Dr. Mahmoud Al-Balas, Jordan 11/10/2022

American women

☐ No response to endocrine

therapy or trastuzumab

☐ Appear to be sensitive to

and PARP inhibitors

platinum-based chemotherapy

☐ Generally poor prognosis (but

BREAST CANCER IN WOMEN: KNOW THE SUBTYPE

It's important for guiding treatment and predicting survival.

..... aka "Triple Negative"

13% of all breast cancer cases

- · Worst prognosis
- Non-Hispanic blacks have highest rate of this subtype at every age and poverty level

73% of all breast cancer cases

- · Best prognosis
- . Most common subtype for every race, age, and poverty level

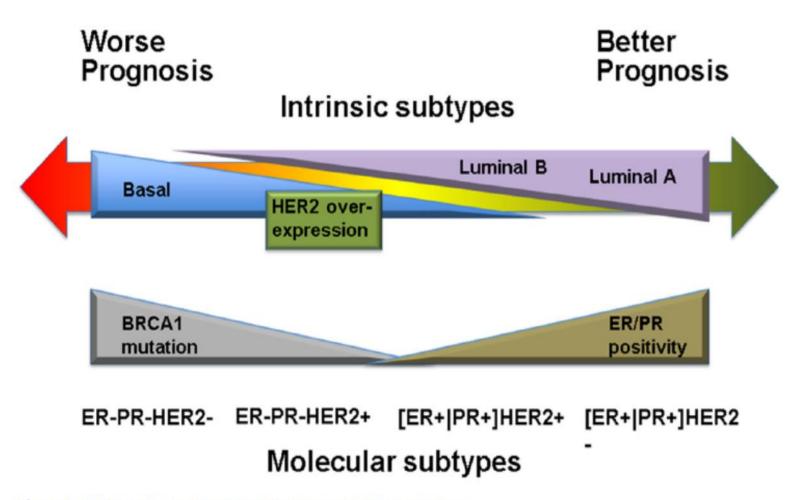
..... aka "Luminat B"

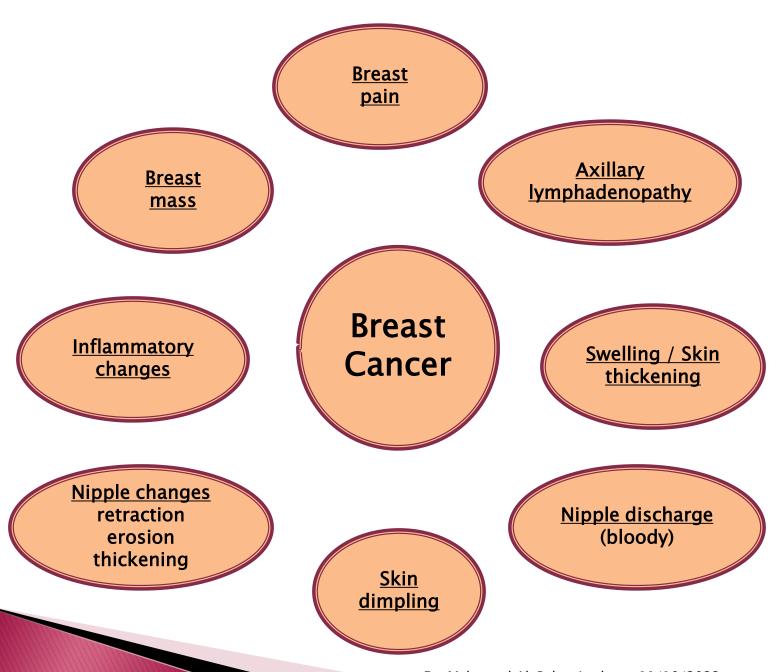
10% of all breast cancer cases

· Little geographic variation by state

5% of all breast cancer cases

· Lowest rates for all races and ethnicities



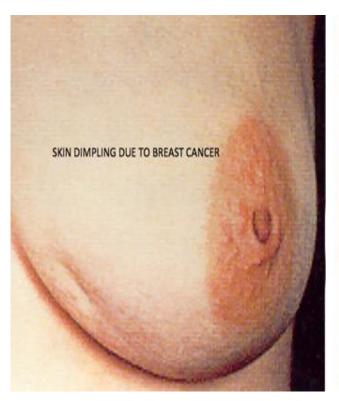

Figure 2. Patient outcome based on breast tumor intrinsic subtypes.

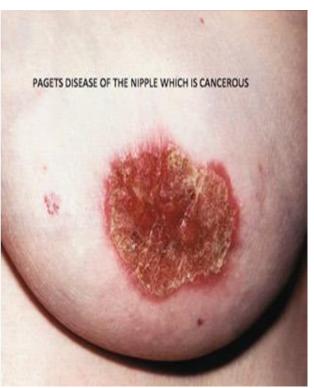
CLINICAL PRESENTATION OF BREAST CANCER

Typically; small tumors are asymptomatic and usually discovered during screening.

- Symptomatic or palpable tumors are generally present in advanced stage.
 - Generally, more aggressive treatment will be required

https://bugswong.smugmug.com/Medical-slides/Breast-disease/


http://cursoenarm.net/UPTODATE/contents/mobipreview.htm?15/24/15747



Inflammatory breast cancer illustrating the classical peau d'orange of involved skin. Courtesy of Dr Giorgio M Paratelli, Radiopaedia.org, rID 43353. Dr. Mahmoud Al-Balas, Jordan

http://www.webpathology.com/image.asp?case=290&n=10

http://milliebello.co.uk/breast-cancer-diagnosis.htm

Staging of B.C

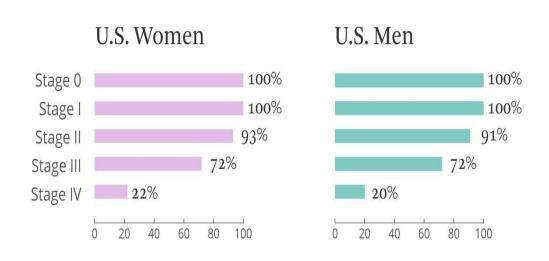
AJCC 7th Edition Staging for Breast Cancer

Stage 0	Tis	N0	M0
Stage IA	T1*	NO	MO
Stage IB	T0-T1*	N1mi	MO
Stage IIA	TO	N1**	MO
	T1*	N1**	MO
	T2	NO	MO
Stage IIB	T2	N1	MO
	T3	NO	MO
Stage IIIA	то	N2	MO
	T1*	N2	MO
	T2	N2	MO
	T3	NI	MO
	T3	N2	MO
Stage IIIB	T4	NO	MO
	T4	N1	MO
	T4	N2	MO
Stage IIIC	Any T	N3	MO
Stage IV	Any T	Any N	M1

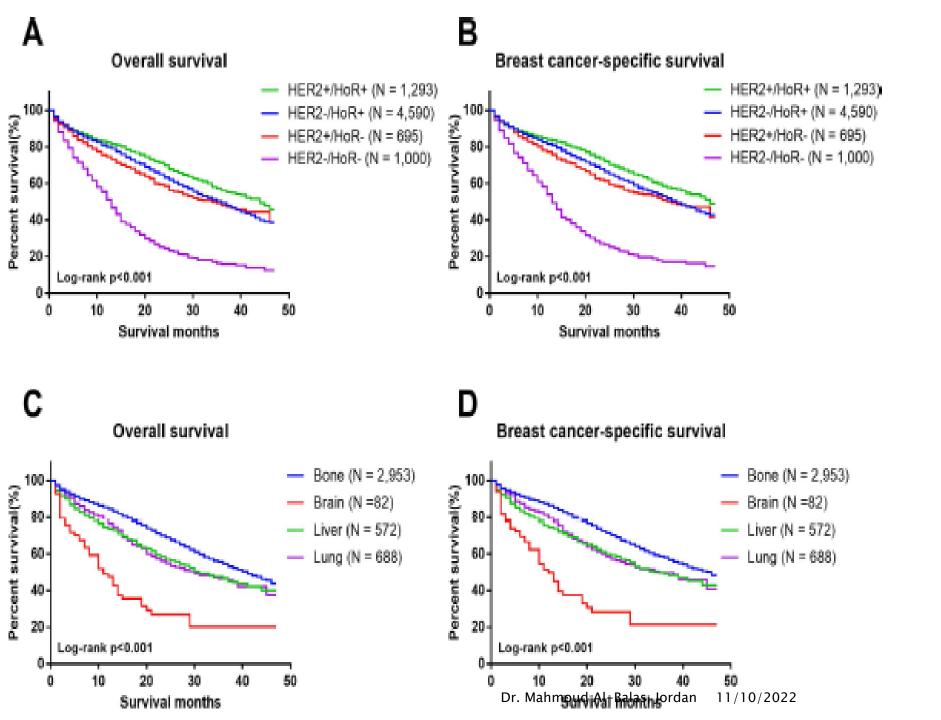
^{*}T1 includes T1mi.


^{**} TO and T1 tumors with nodal micrometastases only are excluded from Stage IIA & are classified Stage IB.

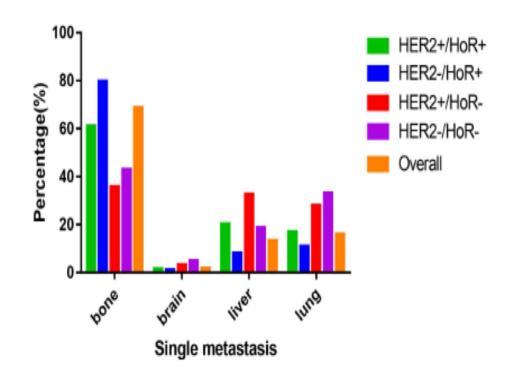
TNM Class	Criteria
ТО	No evidence of primary tumor
Tla	Carcinoma in situ
T1	< or = 2 cm
Tlmlc	microinvasion .1 cm or less
T1a	>.1 to .5 cm
T1b	>.5 to 1 cm
T1c	>1 to 2 cm
T2	>2 to 5 cm
T2 T3	>2 to 5 cm >5cm
T3	>5cm Any size tumor with direct extension to : a) Chest
T3	>5cm Any size tumor with direct extension to : a) Chest wall or b) skin
T4 T4a	>5cm Any size tumor with direct extension to : a) Chest wall or b) skin Chest wall, not including pectoralis muscle


TNM Class	Criteria
Nx	Regional lymph nodes cannot be removed
N0	No regional lymph node metastasis
N1	Metastasis to movable ipsilateral axillary lymph nodes1-3 ALN
N2	 Metastases in ipsilateral axillary lymph nodes fixed of matted (N2a) or met. only in clinically apparent ipsilateral mammary nodes without clinically evident axillary lymph nodes. (N2b) 4-9 ALN
N3	 Metastases in ipsilateral axillary or infraclavicular lymph nodes (N3a) or clinically apparent ipsilateral internal mammary lymph nodes (N3b) or ipsilateral supraclavicular lymph nodes (N3c) 10 or more ALN
MX	Distant metastasis cannot be assessed
MO	No distant metastasis
M1	Distant metastasis

Prognosis


5-Year Survival Rate U.S. Women

5-Year Survival Rate


https://www.healthline.com/health/breast-cancer/survival-facts-statistics#1

Breast cancer metastasis

Impact of molecular subtypes on metastatic breast cancer patients: a SEER population-based study

Yue Gong^{1,2}, Yi-Rong Liu^{1,2}, Peng Ji^{1,2}, Xin Hu¹ & Zhi-Ming Shao^{1,2,3}

Treatment of breast cancer

TREATMENT SELECTION?

Patient Factors:

- ☐ Age
- Medical condition
- Expectations
- ☐ Family history
- ☐ Inherited BC
- ☐ Contraindication to BCS

Tumor Factors:

- ☐ Stage
- ☐ Histologic subtypes
- ☐ Biologic tumor features
- Unilateral or Bilateral
- Primary or recurrent tumor

Treatment category

Surgery

Surgeon

Radiation therapy

Radiation Oncologist

Systematic therapy

Medical Oncologist (attack cancer cells throughout the body)

Specific treatments

- Lumpectomy
- Lymph node dissection (seminal and axillary)
- Mastectomy
- External beam (3D conformal, IMRT)
- Brachytherapy (High dose [HDR] or low dose [LDR])
- Intraoperative radiation (IORT)
- Chemotherapy
- Hormone therapy
- Targeted drug therapy

Surgical management

Wide local excision / BCS

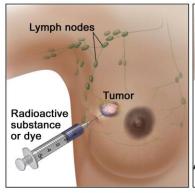
Simple mastectomy

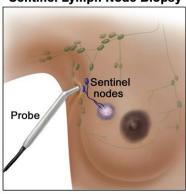
Modified radical mastectomy

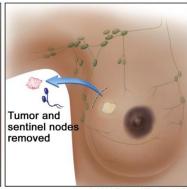
Skin sparing mastectomy (SSM)

Nipple – areola skin sparing

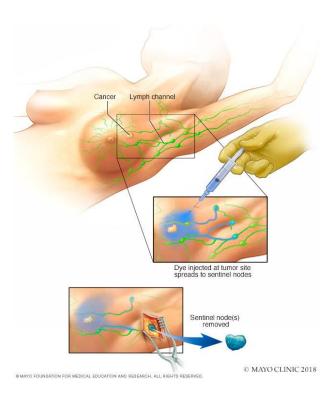
Evaluation of Axilla in Breast Cancer


Introduction


- T and N according to the TNM staging system were considered the most important major prognostic factors in predicting survival and selecting adjuvant treatment.
- Recently, Tumor biology is considered more important than other factors for prognosis and treatment selection.
- ALND was the standard for axillary management in patients with clinically negative axilla early breast cancer.
- Nowadays, there is no survival benefit form ALND in BC.


Lymphatic drainage of the breast

- A network of interconnected superficial and deep lymphatic vessels.
- Sappey's plexus (i.e. retroareolar subdermal plexus) drain both areola and nipple.
- Interlobular connective tissue and peri lactiferous channel lymphatics also drain to Sappey's plexus.
- Efferent lymphatic channels leave this plexus and pass along the lateral border of pectorlais major muscle and enter the axilla through the clavicopectoral fascia.
- ALN drain 75% of breast lymphatics
- Internal mammary nodes drain 25%


Sentinel Lymph Node Biopsy

© 2022 Terese Winslow LLC U.S. Govt. has certain rights

Sentinel Lymph node biopsy – SLNB

- SLN is the first lymph nodes drained by lymphatics from the breast.
- First used in Breast cancer by Armando Giuliano in 1994 (Blue dye)
- At least one SLN is required to assess the status of axillary nodes.
- If SLN is free, other lymph nodes are accepted to be clear.
- ▶ The detection rate for SLN range between 95-100%
 - False negative rate for one SLNB around 10%
 - FNR decrease to around 1% if 3 or more SLN are harvested
- No clinical significance for harvesting more than 3 SLN.

SLNB - Indications

It is accepted as a standard approach in all breast cancer patients with clinically negative axilla regardless the size and location of the tumor.

SLNB - Contraindications

- Clinically metastatic lymph nodes (palpable or radiologic finding)
- Preoperative metastatic LN by a biopsy.
 - 40% of N+ patients can be detected with preoperative US and needle biopsy.
 - SLN has high FNR in clinically N1 cases due to blockage of lymphatic channels by tumor cells.
- LABC with inflammatory component or dermal edema (i.e. blocked lymphatics)
- ▶ Patients with allergic reaction to the dye 1-3%
- Pregnancy ...
 - Blue due is contraindicated (fatal effects)
 - Radioactive substances can be used in low doses! Caution ...

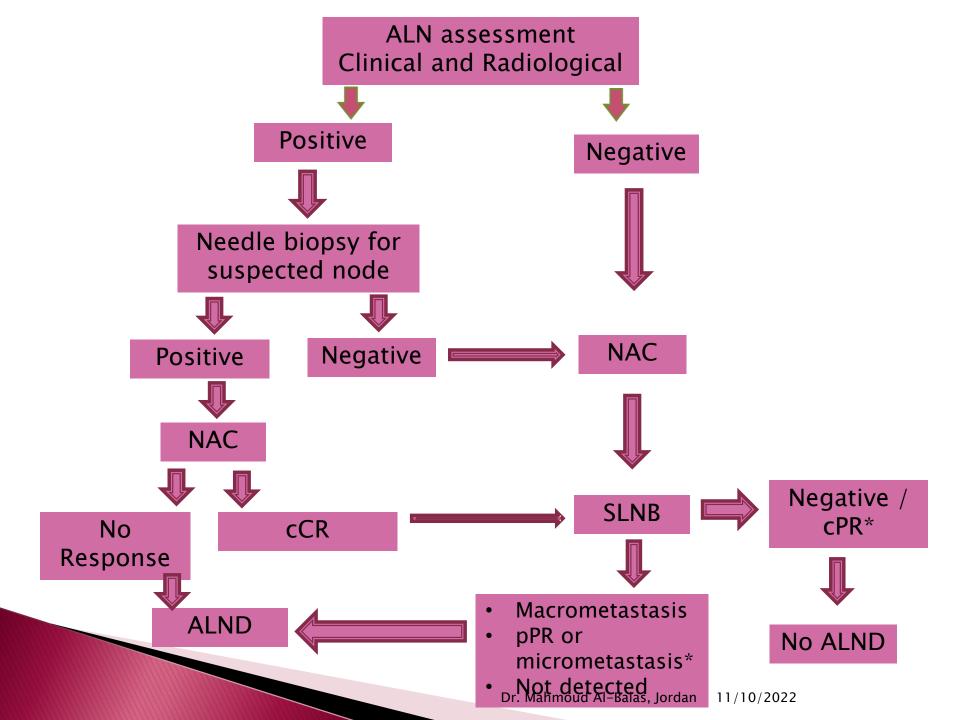
SLNB in DCIS

- ALN metastasis in 1-2% of DCIS (i.e. invasive component within DCIS)
- SLN metastasis detection rate in DCIS
 - 7.4% when DCIS diagnosed with needle biopsy
 - 3.7% when DCIS diagnosed by excisional biopsy

Indications for SLNB in DCIS

- DCIS diagnosed by needle biopsy
- High grade DCIS
- DCIS with microinvasion
- Multifocal DCIS
- Comedo-DCIS
- DCIS with a palpable mass
- Large DCIS (> 2-3 cm)
- Candidates for mastectomy

SLNB in Multifocal or multicentric BC


- Multicentric tumors → caner foci within the same quadrant and in close proximity to each other (< 3-4 cm apart)</p>
- Multifocal tumors → tumors in 2 different quadrants (> 4cm apart)
- SLNB can be safely utilized in these cases
- Some studies reported higher false negative rates

SLNB in previous axilla / breast surgery

- Patients with previous BCS, chest wall radiotherapy or ALND have altered lymphatics and SLN detection rate is considered low.
 - Compensatory flow of lymphatics to IMLN or contralateral axilla is noticed (i.e. secondary SLN sites)
- Postoperative SLN exploration (prior to adjuvant treatment) has low success rate.
- Second SLN exploration for recurrent breast cancer with completed adjuvant treatment have SLN detection rate (95– 99%); this is related to reestablished lymphatic channels.
- SLNB can be performed after aesthetic breast surgery and even after mastectomy.

SLNB after neoadjuvant chemotherapy

- Recently, NAC is considered in more clinical cases even in absence of ALN metastasis.
 - The axilla is negative in about 50% of patients with NAC plan.
- NAC results in 30-40% downstaging within clinically positive axilla.
- Chemotherapeutic impact on lymphatic drainage is abandoned.
- SLN detection rate after NAC 85% and reaches 98% if 2 or 3 lymph nodes are removed
 - Combined radiocolloid and blue dye improve detection rate.
- ▶ FNR 10.6–14%

SLNB in male Breast Cancer

- Male breast cancer is rare 1%
- Most common in elderly.
- Tumors are often larger with greater ALN metastasis
- Detection rate 97–100%
- High SLN and non-SLN positivity
- SLNB prevent unnecessary ALND in 50% of patients

Do we need to perform ALND in all SLNB positive patients?

SLNB examination:

- No tumor cells
- Isolated tumor cells → metastasis < 0.2 mm</p>
- Micrometastasis → metastasis 0.2-2 → Non-SLN metastasis mm
- Macrometastasis → metastasis > 2 mm

Z0011 Study

- T1/T2 clinically negative ALN
- 446 SLNB
- ▶ 445 SLNB + ALND
- Average follow up for 6.2 years

3 or more positive LNs:

5% in SLNB 17.6% SLNB + ALND (P<0.001)

5 year rates	Breast Recurrence	Axillary Recurrence	DFS	OS
SLNB	2.1%	1.3%	82.8	92.5
SLNB + ALND	3.7%	0.6%	82.2 %	91.9 %

No Significant Statistical Differences between these 2 Groups

The End