## **Drug – induced hepatotoxicity** Lecture 7

#### **Prof. Ahmed Shaaban**

Professor of Pharmacology & Senior Consultant of Endocrinology



# Drug - induced hepatotoxicity Criteria

- 1. Mimic all liver diseases.
- 2. Careful history & investigations.
- 3. Prothrombin time is used for early diagnosis of iatrogenic liver dysfunction.
- Also is prognostic in acute & chronic liver diseases.
- Because t1/2 of vitamin K dependent factors is short.
- 4. Genetic & environmental factors contribute.
- 5. ↑risk in old age.



- 6. Withdrawal is the main ttt.
- 7. Drugs used should be totally excreted by kidney.
- 8. Reaction onset: usually 5 days 3 months.
- 9. Course after cessation: < 2 weeks (hepatocellular).

< 4 weeks (cholestatic).

Reaction after re - administration: 1 day - 2 weeks (hepatocellular).
1 day - 3 months (cholestatic).

#### Mechanism

- 1. Dose or duration dependent.
- 2. Hypersensitivity reaction.

Drug or its reactive metabolites  $\rightarrow$  antibodies.

3. Idiosyncrasy: commonest..... in phase IV clinical trials.



### **Types of liver injury**

**A) Mild**  $\uparrow$  **liver enzymes** (ALT & AST) without manifestations.

e.g. statins , oral antidiabetics.

### **B)** Hepatitis (hepatocellular):

1. Acute: inflammation or necrosis.

↑liver enzymes + manifestations.

e.g. acetaminophen, aspirin, diclofenac.

- 2. Fulminant (acute liver failure, encephalopathy):
  - $\uparrow\uparrow$  ALT or ALT/ alkaline phosphatase > 5.

↑↑Prothrombin time

3. Chronic:  $\uparrow$  enzymes and/ manifestations > 3 months.

e.g. phenytoin, valproate, propylthiouracil,  $\alpha$  methyl dopa, amiodarone (serious, after stopping, may need transplantation) & halothane.

#### **C) Cholestasis:**

↑bilirubin, alkaline phosphatase & GGT.

If > 3 months: chronic.

e.g.<u>antiepileptics</u> as phenytoin & carbamazepine, phenothiazines, haloperidol, TCA, naproxen, <u>estradiol</u>, <u>oral contraceptives</u>, <u>androgens</u>, <u>anabolic steroids</u>, <u>carbimazole</u>, rifampin, tetracyclines, cotrimoxazole, erythromycin estolate, Augmentin.

#### **D)** Fatty liver (steatosis):

With or without hepatitis.

Mild  $\uparrow$  liver enzymes (ALT & AST) + enlarged liver.

May  $\rightarrow$  cirrhosis or acute liver failure.

e.g. <u>methotrexate, corticosteroids</u>, valproate, tetracyclines, <u>amiodarone</u>, Reye,s syndrome, allopurinol, <u>herbs</u>,....?

#### E) Cirrhosis:

#### By B (chronic),C or D.

e.g. amiodarone,  $\alpha$  methyl dopa, methotrexate.

#### F) Granuloma:

e.g. phenytoin, allopurinol. **G) Tumors:** 

e.g. sex hormones & oral contraceptives.

In D – G: abdominal ultrasonography.

### Hepatic encephalopathy Mechanism

Gut bacteria on dietary proteins, produce:

- a. Urease : proteins into ammonia.
- b. Glutaminase: glutamine into glutamate & ammonia.

Normally, ammonia is converted into:

- 1. In liver  $\rightarrow$  urea.
- 2. In brain astrocytes  $\rightarrow$  + glutamate (by glutamine synthetase)  $\rightarrow$  glutamine.



### In hepatic encephalopathy:

- 1. ↑ammonia.
- 2. ↓glutamate.
- 3. ↑GABA ergic tone.

This  $\rightarrow$  brain edema & neuropsychiatric manifestations.

In fasting: glycogenolysis is not sufficient to *fblood* glucose.

So  $\uparrow$ gluconeogenesis  $\rightarrow \downarrow$ amino acids,  $\uparrow$ ammonia & sarcopenia.

### **Precipitating factors**

- 1. GIT infection.
- 2. †dietary proteins.
- 3. GIT bleeding.
- 4. Hypokalemia.