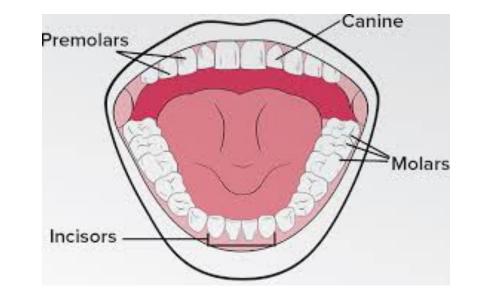
Propulsion and Mixing of Food in the Alimentary Tract

Dr. Iman Aolymat imank@hu.edu.jo

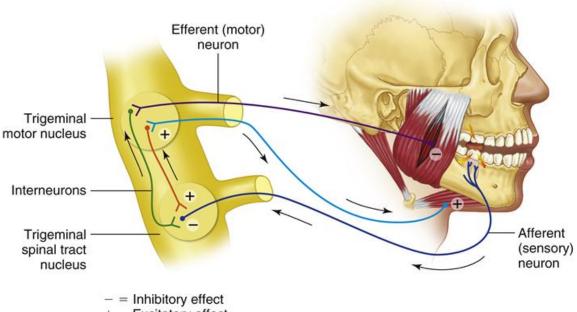

Ingestion of food

- Hunger \rightarrow Amount of food
- Appetite \rightarrow Type of food

Chewing (mastication)

♦<u>Teeth</u>

✓Incisors-cutting
 ✓Molars-grinding
 ◆Jaw muscles

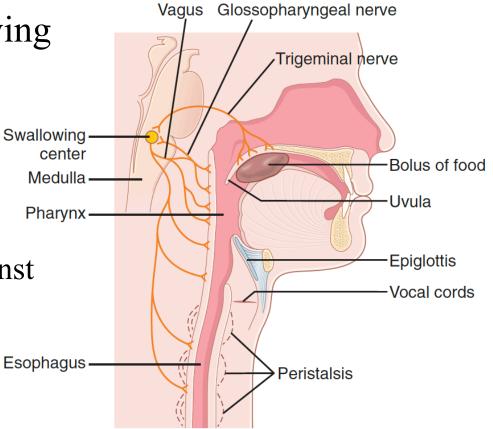


Purpose of Chewing -

- Breaks indigestible cellulose
- \uparrow surface area $\rightarrow \uparrow$ digestive enzymes act + \uparrow digestion rate
- Mixes food with saliva -
 - Begins digestion of starches (α -amylase, lingual lipase)
 - Lubricates food for swallowing
- Prevents excoriation of GIT
- Improves food emptying from stomach

Nervous Control of Chewing

- Innervation -
 - Controlled by nuclei in BS
 - 5th cranial nerve motor branch innervates muscles of mastication
 - Stimulation of reticular areas in BS taste centers
 → rhythmical chewing movements.
 - Stimulation of areas in hypothalamus, amygdala,
 & CC near areas for taste and smell → chewing.

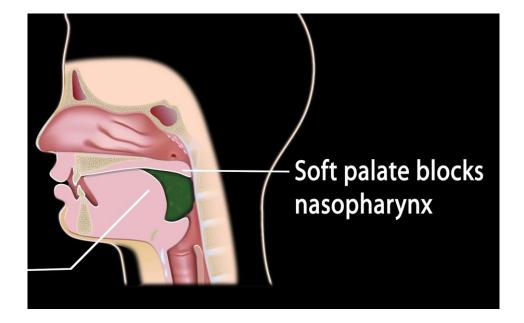

- + = Excitatory effect
- Chewing reflex mechanism –(inhibitory & excitatory)
 Food in mouth → relax muscles of mastication → jaw drops → stretch reflex → rebound contraction → jaw rise, teeth closure & pushes food against lining of mouth → repetitive action

Swallowing (deglutination)

• Pharynx subserves respiration and swallowing

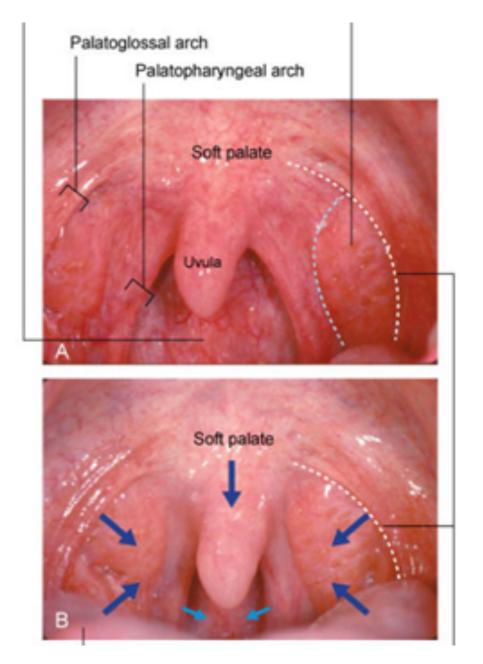
Three stages -

- Voluntary
- Initiates swallowing process
- Food is pulled upward & backward to pharynx against palate by tongue

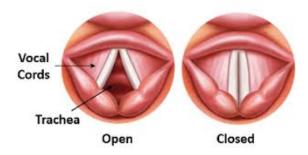

Swallowing (deglutination)

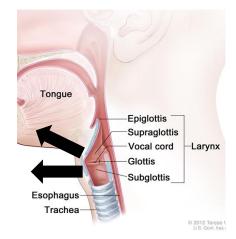
- Involuntary
 - Pharyngeal passage of food through pharynx into esophagus
 Esophageal passage of food from pharynx to stomach

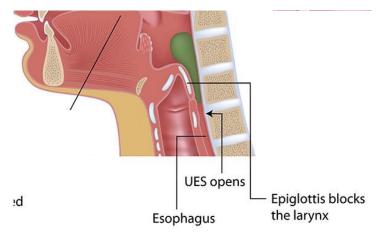
Pharyngeal Stage of Swallowing


Food in pharynx - tactile stimulation of epithelial swallowing receptors around opening of pharynx \rightarrow BS \rightarrow several automatic pharyngeal muscle contractions:

1. Soft palate pulled upward \rightarrow close the posterior nares


Pharyngeal Stage of Swallowing


2. Palatopharyngeal folds pulled together \rightarrow food must pass into posterior pharynx



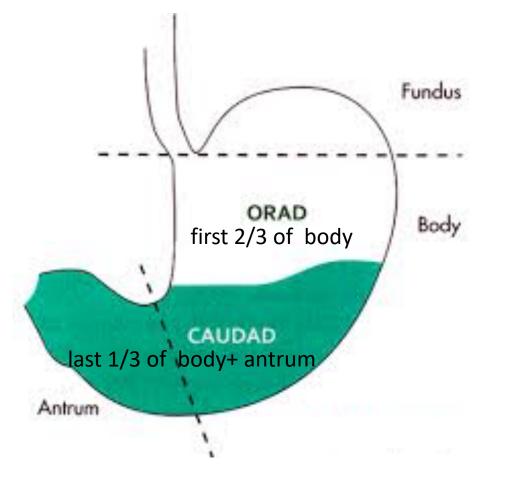
Pharyngeal Stage of Swallowing

- 3. Trachea is closed (respiration inhibited)
 - Vocal cords approximated
 - Larynx pulled upward & anteriorly
 - Epiglottis covers larynx
- 4. Relaxation of UES →food movement from posterior pharynx into upper esophagus
 >UES strongly contracted between swallows preventing air from entering esophagus during respiration
- 5. Peristaltic contraction of pharynx \rightarrow pushing food into esophagus

Swallowing (deglutination)

Nervous Control of Swallowing reflex

- Pharyngeal phase -starting with voluntary food movement, ending with involuntary swallowing reflex < 6 sec
 - Afferent-tactile areas of posterior mouth & pharynx (most sensitive on tonsillar pillars) → sensory portions of trigeminal & glossopharyngeal nerves → medulla oblongata (tractus solitarius)
 - Efferent- swallowing center (reticular substance of medulla & lower portion of pons) \rightarrow V,IX,X,XII, sup. Cervical nerves \rightarrow pharynx & upper esophagus
 - Swallowing center inhibits respiratory center (medulla)

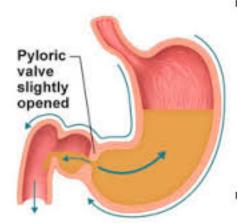

Esophageal Stage of Swallowing

- Primary peristalsis continuation of pharyngeal swallowing peristalsis, 8-10 sec
- Gravidity aids in food pulling to stomach
- Secondary peristalsis -
 - Failure of primary peristalsis
 - Induced by distention
 - Repeats until bolus is cleared
 - Initiated partly by myenteric NS & partly by vagal reflexes starting in pharynx → medulla → glossopharyngeal & vagal nerves → esophagus
- Upper esophagus upper 1/3 is striated muscle (glossopharyngeal & vagal nerves)
- Lower esophagus lower 2/3 is SM (myenteric NS (enough) + vagus)

Receptive Relaxation of the Stomach

- LES/GES
- Tonically constricted (30 mm Hg) + valvelike closure of lower esophagus
 →prevents acid reflux into esophagus
- Receptive relaxation of LES ahead of peristaltic wave → propulsion of food into stomach
- Esophageal peristaltic wave approaches stomach → myenteric relaxation of stomach & duodenum → to receive food from esophagus

Motor functions of the stomach


Motor functions of stomach

- Functions of gastric SM-
 - ➢ Storage of food <u>orad area</u>
 - Food stretching \rightarrow vagovagal reflex –stomach \rightarrow BS \rightarrow stomach \rightarrow stomach relaxation & outward bulging
 - Stomach capacity 0.8-1.5 L
 - Pressure in stomach remains low until this limit approached

Motor functions of stomach

• Functions of gastric SM-

- Mixes food with gastric juice from gastric glands = chyme
- Chyme fluidity-amount of food, H2O, secretions, degree of digestion
- ✓ Mixing waves (weak peristaltic constrictor waves) → beginning in mid-upper stomach & progress to antrum (every 15-20 sec)
- ✓ Initiated by **slow waves** → more intense toward antrum → powerful peristaltic AP→ pushing chyme toward pylorus
- ✓ Contracted antrum → retropulsion = squeezed back toward body of stomach

③ Retropulsion: The pyloric end of the stomach acts as a pump that delivers small amounts of chyme into the duodenum, simultaneously forcing most of its contained material backward into the stomach.

Motor functions of the stomach

Hunger Contractions

- Intense contraction caused by empty stomach
- Rhythmical peristaltic contractions in body of stomach
- Successive strong contractions \rightarrow tetanic contraction (2-3 m)
- Can cause pain= hunger pangs (12 -24 h after last meal, max. intensity 3-4 days & gradually ↓ after)

Motor functions of the stomach

• Functions of gastric SM-

Propels chyme into duodenum - <u>caudad area</u>

- Thick pyloric sphincter -tonically constricted (Still leaky for water and other fluids to empty from stomach to duodenum

✓ Pyloric sphincter contraction \uparrow or \downarrow by nervous & hormonal mechanisms

- Strong gastric peristaltic waves > closing pressure of pylorus muscle (pyloric pump)
- Pushing chyme into duodenum & mixing in stomach

- Moderate degree by stomach factors-
- 1. \uparrow Food in stomach \rightarrow \uparrow gastric emptying (stretch mediated myenteric reflexes $\rightarrow \downarrow$ pylorus & \uparrow pyloric pump)
- 2. Gastrin -stretching of stomach $\rightarrow \uparrow$ gastrin from G cells of the antral mucosa $\rightarrow \uparrow$ gastric juice & enhance activity of pyloric pump.

- More important control from the **duodenum**
- 1. Inhibit pyloric pump
- 2. Increase tone of pyloric sphincter

Stimulated by:

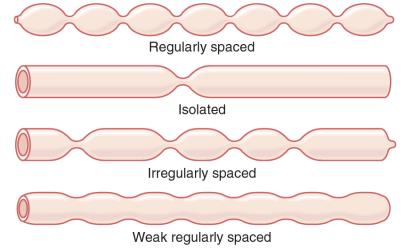
- Distention of duodenum
- Too much acidic chyme (pH< 3.5-4) in SI (quick within 30 sec)→neutralized by pancreatic and other secretions
- Too much unprocessed protein /fat
- Hypotonic/hypertonic chyme
- Irritation

- Inhibitory Enterogastric reflexes:
- Intrinsic ENS (Direct form doudernum to stomach)
- Extrinsic nerves
- 1. Prevertebral sympathetic ganglia \rightarrow inhibitory SN fibers to stomach
- 2. Vagus nerves to $BS \rightarrow inhibit$ normal excitatory signals transmitted to stomach through vagi

Hormonal-stimulated mainly by fats in duodenum

- **CCK-** from mucosa of jejunum \rightarrow block stomach motility caused by gastrin
- Secretin -from duodenal mucosa in response to gastric acid passed from stomach through pylorus

Glucose-dependent insulinotropic peptide/ gastric inhibitory peptide (GIP) From upper SI mainly


- \checkmark Stimulated by fat, lesser extent by carbohydrates.
- ✓ General but weak effect -↓ GI motility.
- ✓ Stimulate secretion of insulin by the pancreas (main function)

SI Motility

• Two types of movements in SI:

Segmentation & Peristalsis

- Segmentation a mixing movement + cause propulsion
- Stimulus: stretching of SI

- Localized concentric contractions spaced at intervals → chain of sausages appearance → chyme chopping
- Frequency of segmentation is determined by frequency of **slow waves**-12/min duodenum & prox. Jejunum, 8-9/min T. ileum.
- Blocked by atropine
- Excitation from myenteric nerve plexus is mandatory for mixing movements

SI Motility

- Peristalsis weak propulsive movement, die out after 3-5 cm
- Stimului:
- 1. Chyme entry into duodenum
- 2. Distention of stomach (Gastroenteric reflex: mediated by myenteric plexus)
- Slowly propelling chyme toward ileocecal valve & spread out the chyme along the intestinal mucosa.
- Velocity 0.5-2.0 cm/sec, faster in proximal intestine, slower in terminal intestine
- 3-5 h required for passage of chyme from pylorus to ICV
- Upon reaching ICV chyme is blocked for several hours until person eats another meal →gastroileal reflex → ↑peristalsis in ileum → pushing chyme through ICV to cecum

Peristaltic Rush

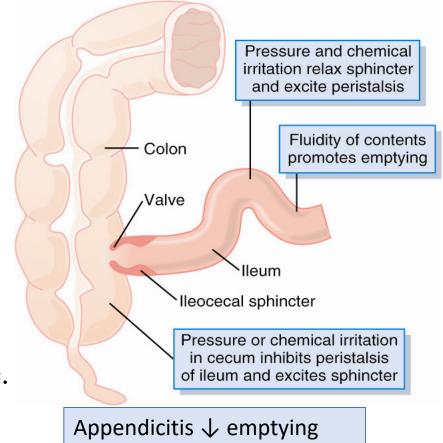
- Intense irritation of intestinal mucosa (e.g. infectious diarrhea) →powerful & rapid peristalsis
- Mediated by nervous reflexes (ANS & BS) + intrinsic ↑ myenteric plexus reflexes
- Travel long distances in SI within minutes→ sweeping contents of intestine into colon → relieving SI irritation.

Control of Small Intestinal Motility

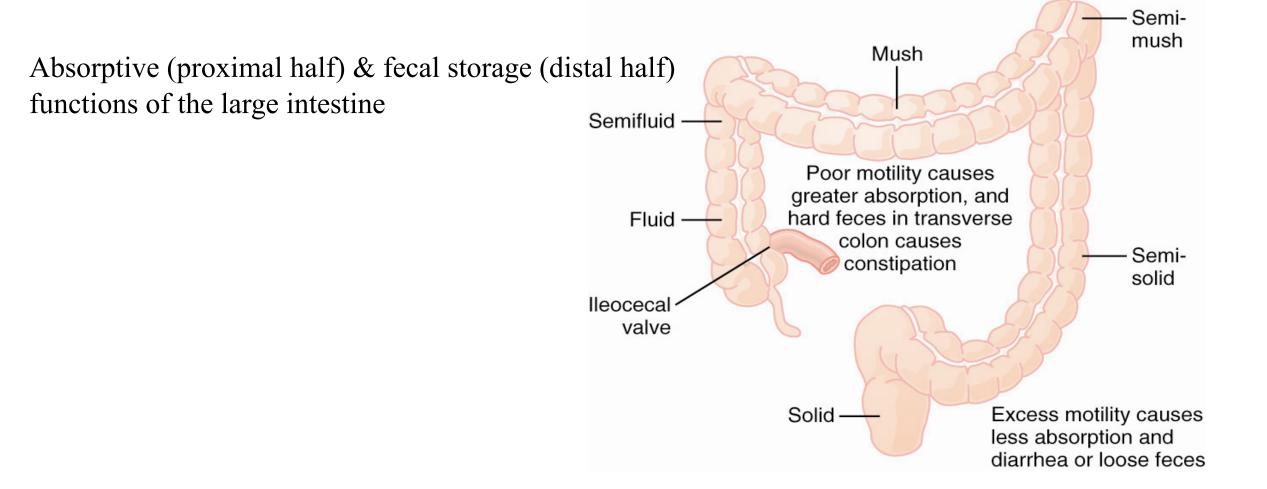
• Hormonal factors -

-Gastrin, CCK, insulin, motilin & serotonin $\rightarrow \uparrow$ peristalsis -Secretin & glucagon $\rightarrow \downarrow$ peristalsis

Movements caused by muscularis mucosae & muscle fibers of villi.

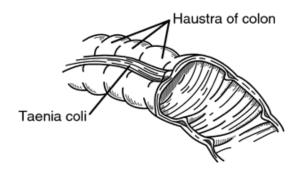

Muscularis mucosae function:

- 1. Folding of intestinal mucosa $\rightarrow \uparrow$ surface area & \uparrow absorption
- 2. Contraction of intestinal villi \rightarrow lymph flow from central lacteals to lymphatic system


Mucosal & villous contractions are mediated by submucosal nerve plexus in response to chyme in SI.

Ileocecal Junction

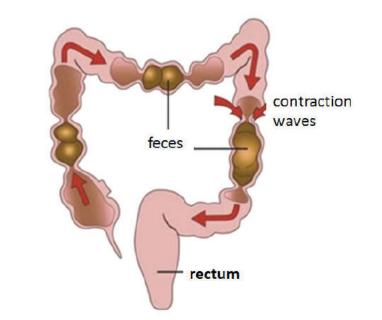
- Functions as a valve and a sphincter
- Valvular function
 - Prevents backflow into small intestine mechanically
- Sphincter function -
 - Regulates movement of ileal contents into large intestine.
 - -1.5-2 L of chyme empty into cecum each day
 - -Regulated by: ENS and prevertebral sympathetic ganglia



• Motility of Colon

Motility of Colon

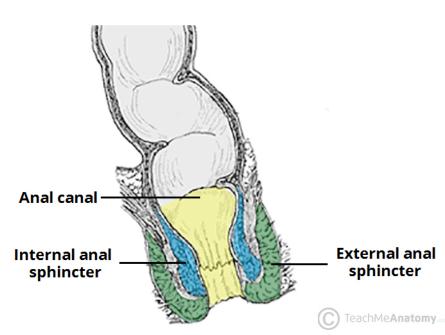
Movements of the colon are sluggish
Mixing and propulsive movements



- 1. <u>Mixing Movements "Haustrations"</u>
- ✓ Combined contractions of circular & longitudinal strips (teniae coli) of muscle \rightarrow haustration
- Move slowly toward anus during contraction
- ✓ Provide minor forward propulsion of colonic contents (mainly cecum & ascending colon)→8-15 h to move chyme from ICV through colon
- Enhances fluid/electrolyte absorption

Motility of Colon

2. Propulsive/Mass Movements

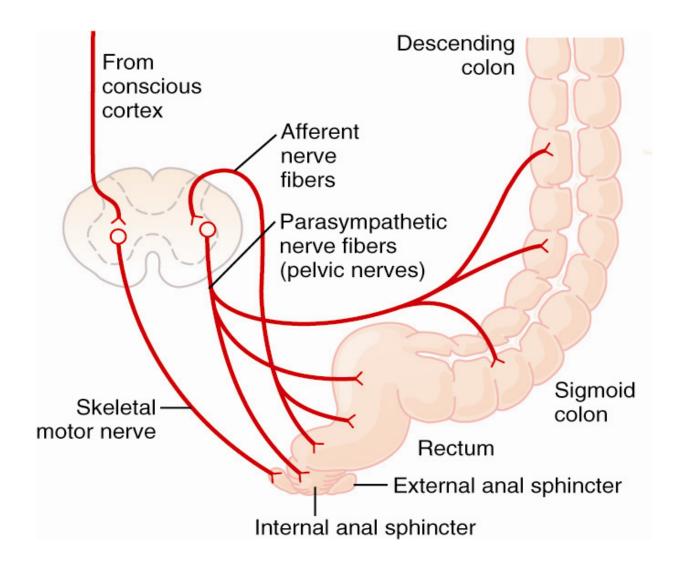

- > Propels fecal material (80 -200 ml/day)
- > From cecum \rightarrow sigmoid
- Freq: 1-3/day after eating breakfast

- ➤ Distention or irritation of colon (T. colon)→ constrictive ring →loss of haustrations distal to constrictive ring & contract as a unit → propelling feces distally
- > Series of mass movements continue for 10-30 min, diminish, return half day later
- Gastrocolic and duodenocolic reflexes (ANS) initiate mass movement (distention of stomach & duodenum

Defecation

- Mostly, rectum is empty of feces
- Weak functional sphincter (at juncture between S. colon & rectum) + sharp angulation
- Feces reached rectum by mass movement→ desire for defecation →reflex contraction of rectum & relaxation of anal sphincters.
- Internal anal sphincter → thickening of circular SM in anus
- External anal sphincter \rightarrow striated voluntary muscle surrounding internal sphincter & extends distal to it.
- ✓ Controlled by pudendal nerve (somatic NS)
- ✓ Under voluntary, conscious, subconscious control
- Continuously constricted unless conscious signals inhibit the constriction.

Control of Defecation


- There are three levels of control -
 - Intrinsic reflex
 - Parasympathetic reflex
 - Involvement of higher centers

Intrinsic Defecation Reflex

- Intrinsic reflex mediated entirely by ENS-weak reflex
- Initiated when feces enters rectum via mass movements
- Rectal distention → afferent signals that spread through myenteric plexus → peristalsis in descending and sigmoid colon, and rectum → force feces toward anus →internal anal sphincter **relaxation** and if external anal sphincter is <u>voluntarily</u> relaxed, defecation occurs.

Parasympathetic defecation (sacral) reflex

- Parasympathetic cord reflex greatly intensifies intrinsic reflex
- Effective in emptying the LI all the way from splenic flexure of colon to anus
- Nerve endings in rectum are stimulated \rightarrow afferent signals \rightarrow SC \rightarrow parasympathetic fibers in pelvic nerves \rightarrow descending and sigmoid colon, and rectum \rightarrow \uparrow peristalsis & internal anal sphincter relaxation
- The lower neurons S2-S4 provide sensory and motor fibers for defecation reflex. They are intact when spinal cord is injured at higher levels.

Defecation Reflex - Higher Centers

- Afferent signals entering SC initiate:
 - deep breath, closure of glottis, contraction of abdominal wall muscles & increased abdominal pressure, pelvic floor relaxation
 - all work to move fecal contents downward
- Newborn babies & people with transected SC, the defecation reflexes cause automatic emptying
- Cord defecation reflex can be excited (either digitally or with enema)

Other autonomic reflexes that affect bowel activity

- **Peritoneointestinal reflex** : irritation of peritoneum (e.g peritonititis); strongly inhibits excitatory enteric nerves \rightarrow intestinal paralysis,
- Renointestinal reflex \rightarrow inhibit intestinal activity due to kidney irritation.
- Vesicointestinal reflex \rightarrow inhibit intestinal activity due bladder irritation.