Secretory Functions of the Alimentary Tract

Pancreas & liver

Dr. Iman Aolymat imank@hu.edu.jo

Pancreas

Function

• Exocrine function

Digestive enzymes for all food types

➢ Bicarbonate solution to neutralize acid chyme & prevent duodenal mucosa damage

• Endocrine function

Secrete insulin

Type of Secretion	Daily Volume (ml)	рН
Saliva	1000	6.0-7.0
Gastric secretion	1500	1.0-3.5
Pancreatic secretion	1000	8.0-8.3
Bile	1000	7.8
Small intestine secretion	1800	7.5-8.0
Brunner's gland secretion	200	8.0-8.9
Large intestinal secretion	200	7.5-8.0
Total	6700	

Internal Structure of Pancreas

- Compound gland with structure similar to salivary gland
- Acini grape-like clusters of cells that store and secrete digestive enzymes
- Ducts secrete bicarbonate 110-150 mEq/ L vs Plasma HCO3 24 mEq/L.
 Ducts unite → Wirsung duct.
 Wirsung duct joins common bile duct to form ampulla of Vater→D

Nerve supply to pancreas

- Sympathetic —splanchnic nerve
- Parasympathetic \rightarrow vagus nerve

Pancreatic digestive enzymes for proteins

Protein digestion pancreatic enzymes		
Enzyme	Action	
Trypsin	Cleaves proteins to polypeptides Converts caseinogen in milk into casein (Curdling of milk) Activates other pancreatic enzymes	
Chymotrypsin	Cleaves proteins to polypeptides Converts caseinogen in milk into casein (faster than trypsin)	
Carboxypolypeptidase	Cleaves polypeptides to amino acids	

Pancreatic digestive enzymes for Fats

Fat digestion pancreatic enzymes		
Enzyme	Action	
Pancreatic lipase activity needs bile salts & colipase	TG→ fatty acids + monoglycerides Responsible for 80% fat digestion Defect: steatorrhea	
Cholesterol esterase	Cholesterol esters \rightarrow cholesterol & fatty acid	

Pancreatic digestive enzymes for carbohydrates

Carbohydrates digestion pancreatic enzymes		
Enzyme	Action	
Pancreatic amylase	Release of disaccharides and a few trisaccharides from starch, glycogen, & other carbohydrate (except cellulose).	

Enzyme	Activator	Acts on (substrate)	End products
Trypsin	Enterokinase Trypsin	Proteins	Proteoses and polypeptides
Chymotrypsin	Trypsin	Proteins	Polypeptides
Carboxypeptidases	Trypsin	Polypeptides	Amino acids
✓ Nucleases	Trypsin	RNA and DNA	Mononucleotides
🗸 Elastase	Trypsin	Elastin	Amino acids
Collagenase	Trypsin	Collagen	Amino acids
Pancreatic lipase	Alkaline medium	Triglycerides	Monoglycerides and fatty acids
Cholesterol ester hydrolase	Alkaline medium	Cholesterol ester	Cholesterol and fatty acids
🗸 Phospholipase A	Trypsin	Phospholipids	Lysophospholipids
🗸 Phospholipase B	Trypsin	Lysophospholipids	Phosphoryl choline and free fatty acids
🗸 Colipase	Trypsin	Facilitates action of pancreatic lipase	_
✓ Bile-salt-activated lipase	Trypsin	Phospholipids	Lysophospholipids
		Cholesterol esters	Cholesterol and fatty acids
		Triglycerides	Monoglycerides and fatty acids
Pancreatic amylase	-	Starch	Dextrin and maltose

Why Doesn't the Pancreas Digest Itself?

- 1. Pancreatic proteolytic enzymes are stored and secreted in **inactive** form
 - -Trypsinogen \rightarrow trypsin
 - Chymotrypsinogen \rightarrow chymotrypsin
 - -Procarboxypeptidase \rightarrow carboxypeptidase
 - Activated only after they are secreted into the intestinal tract.
- 2. Trypsin inhibitor is present in cells

Activation of Proteolytic Enzymes

- Trypsin autocatalytic activation activates
- trypsinogen
- chymotrypsinogen,
- procarboxypeptidase

Trypsin Inhibitor

- Enzyme precursors stored in cells along with trypsin inhibitor
 - Trypsin inhibitor prevents formation of trypsin
 - in acini
 - in ducts
 - Acute pancreatitis -
 - a primary lack of trypsin inhibitor
 - not enough trypsin inhibitor is present

Bicarbonate neutralizes acidic chyme

- Secretin stimulates HCO3
- HCO3 Function:
- Neutralizes acid chyme

$$HCl + NaHCO_{3} \longrightarrow NaCl + H_{2}CO_{3} \xrightarrow{2} H_{2}O$$

 CO_{2}

Creates optimal conditions (pH = 7-8) for digestive enzymes

Model of bicarbonate secretion

- 1. CO₂ combines with H₂O in presence of carbonic anhydrase in cell
- 2. Carbonic acid dissociates into HCO_3^- and H^+
- H⁺ are transported through basolateral membrane by secondary transport mechanism that requires Na⁺ gradient. Na⁺ gradient is established by usual Na⁺ - K⁺ ATPase pump.
- 4. HCO_3^{-1} moves out of cell in exchange for Cl⁻¹ (Rate of HCO_3^{-1} secretion is dependent upon luminal [Cl⁻¹]
- 5. Na⁺ moves down electrochemical gradient.
- 6. H2O moves into lumen establishing osmotic equilibrium.
- Pancreatic juice is always isotonic.

Effect of Secretion Rate on Ionic Composition of Pancreatic Juice

- Low secretion rates
 - [HCO3] is low
 - [Cl] is high
- High secretion rates
 - [HCO3] is high
 - [Cl] is low
- Na and K concentrations always same as plasma

Regulation of pancreatic secretion

Hormones Inhibiting Pancreatic Secretion

- 1. Pancreatic polypeptide (PP) secreted by PP cells in islets of Langerhans of pancreas
- 2. Somatostatin secreted by D cells in islets of Langerhans of pancreas
- 3. Peptide YY secreted by intestinal mucosa
- 4. Peptides like ghrelin and leptin

Figure 65-10. Regulation of pancreatic secretion.

Phases of Pancreatic Secretion

- Cephalic (20%)

Both phases mediated by vagus • Gastric (5-10%) | low H2O & electrolytes, high enzyme secretion

- Intestinal (70-80%)
 - acid \rightarrow secretin \rightarrow HCO₃⁻/H₂O
 - fat/protein \rightarrow CCK \rightarrow enzymes
 - $\operatorname{acid}/\operatorname{fat/protein} \rightarrow \operatorname{vagovagal} \operatorname{Ach} \rightarrow \operatorname{enzymes}$
- CCK and acetylcholine both potentiate the effects of secretin on H_2O and HCO_3^- secretion.

Figure 65-9. Sodium bicarbonate (*NaHCO*₃), water, and enzyme secretion by the pancreas, caused by the presence of acid (*HCl*), fat (soap), or peptone solutions in the duodenum.

Phases of Pancreatic Secretion

Pancreatic HCO₃⁻ Output (Secretin) Response to Duodenal Acidification

- Secretin is present in inactive form, prosecretin, in S cells (D & J)
- Released when pH < 4.5 →pancreas to secrete large quantities of fluid containing high [HCO3] (up to 145 mEq/L) & low [Cl]
- Secretin acts to open Cl channels & thus increase secretion of HCO3
- Below pH = 3, secretin release is maximal in segment of D. Further release of secretin depends upon area of SI affected. (Maximal HCO3 response is 30 mEq/hr)
- During meal pH rarely < 3.5 or 4.0.

Bile secretion by the liver

- Liver function:
- Liver cells synthesize about 6 g of bile salts/day.
- Bile secretion -600 -1000 ml/day.

- Bile acids functions:
 - Fat digestion and absorption
 - Excretion of bilirubin (hemoglobin destruction by-product) and excess cholestrol.

Fat digestion and absorption

- *Fat digestion and absorption by means of:*

(1) Emulsification (detergent function) of large fat particles into many minute particles \rightarrow surface of which can be attacked by lipase enzymes

(2) Aid in absorption of digested fat end products (fatty acids, monoglycerides, cholesterol, other lipids by forming **micelle**) sthrough I mucosal membrane.

- Micelles are semisoluble in chyme because of electrical charges of bile salts
- ✓ No bile salts, about 40% of ingested fats are lost into feces → metabolic deficit.

Micelles Formation

Function of bile salts in fat digestion and absorption

- \checkmark Precursor of the bile salts is **cholesterol**.
- ✓ Cholesterol is present in diet / synthesized in liver cells during fat metabolism.
- ✓ Cholesterol is first converted to cholic acid or chenodeoxycholic acid in about equal quantities.
- ✓ These acids in turn combine principally with glycine and to a lesser extent with taurine to form glyco- and tauro-conjugated bile acids.
- ✓ The salts of these acids, mainly Na salts, are then secreted in the bile.

Physiologic anatomy of biliary secretion:

- Bile is secreted in two stages by the liver:
- Hepatocytes (large amounts of bile acids, cholesterol, & other organic constituents) →bile canaliculi between hepatic cells.
- 2 Directly into D (BD-HD) / stored in GB (CD)

Physiologic anatomy of biliary secretion:

- Second portion of liver secretion is added to the initial bile by epithelial cells lining ductules and ducts.
- Watery solution of Na & HCO3
- Sometimes increases total quantity of bile 100%.
- Stimulated by **secretin** to supplement HCO3 in pancreatic secretion (for neutralizing gastric acid)

BILE PIGMENTS

Bilirubin and biliverdin

bilirubin is the major bile pigmentin human beings.Bile pigments are formed duringthe breakdown of hemoglobin(destroyed RBCs)

Normal bilirubin (Total bilirubin) content in plasma is 0.5-1.5 mg/dL. >> 1mg/dL→hyperbilirubinemia. >> 2 mg/dL →jaundice occurs.

Storing and Concentrating Bile in GB

- Bile secreted continually by liver.
- Most of secreted bile is stored in GB until it is needed in D.
- Maximum volume capacity of GB is 30-60 ml
- 12 hr bile secretion is about 450 ml →can be stored in GB due to continous absorption of H2O, Na, Cl, other electrolyte by epithelial mucosa of GB

Storing and Concentrating Bile in GB

- Absorption is caused by active transport of Na, followed by secondary absorption of Cl, H2O, & others.
- The concentrated bile contain bile salts, cholesterol, lecithin, and billirubin.
- Bile is normally concentrated up to 5 fold or as much as 15 20 folds

Composition of Bile

Table 65-2 Composition of Bile

	Substance	Liver Bile	Gallbladder Bile
	Water	97.5 g/dl	92 g/dl
	Bile salts	1.1 g/dl	6 g/dl
	Bilirubin	0.04 g/dl	0.3 g/dl
	Cholesterol	0.1 g/dl	0.3 to 0.9 g/dl
	Fatty acids	0.12 g/dl	0.3 to 1.2 g/dl
Not absorbed	Lecithin	0.04 g/dl	0.3 g/dl
	Na ⁺	145 mEq/L	130 mEq/L
	K^+	5 mEq/L	12 mEq/L
	Ca ⁺⁺	5 mEq/L	23 mEq/L
	Cl⁻	100 mEq/L	25 mEq/L
	HCO_3^-	28 mEq/L	10 mEq/L

Cholecystokinin Stimulates GB Emptying

- 1. GB begins to empty (30 min) after fatty meals comes to D.
- 2. GB emptying is rhythmical contractions of the gallbladder wall + Simultaneous relaxation of sphincter of Oddi.
- 3. Most potent stimulus for GB contractions is CCK
- 4. Acetylcholine-secreting nerve fibers from both the vagi and the intestinal ENS have **less** effect on GB contraction.
- 5. When significant quantities of fat are present, GB empties completely in about 1 hour.

2. Relaxation of sphincter of Oddi

Figure 65-11. Liver secretion and gallbladder emptying.

Enterohepatic Circulation of Bile Salts

- 94% of bile salts are reabsorbed into blood
- from SI
- $\frac{1}{2} \rightarrow$ by diffusion through mucosa (early portions of SI)
- $\frac{1}{2} \rightarrow$ active transport process through I mucosa in distal ileum.
- Enter portal blood and pass back to the liver.

Enterohepatic Circulation of Bile Salts.

- Salts are absorbed almost entirely back into hepatic cells & resecreted into bile.
- Small quantities of bile salts lost into feces → replaced by new amounts formed by liver cells.
- Quantity of bile secreted by liver is dependent on availability of bile salts
- Bile fistula → liver increases production of bile salts 6-1 0-fold → ↑ bile secretion
- Secretin \uparrow bile secretion (\uparrow NaHCO3)

