
Lecture 5

Dr. Iman Aolymat imank@hu.edu.jo

Secretory Functions of the Alimentary Tract

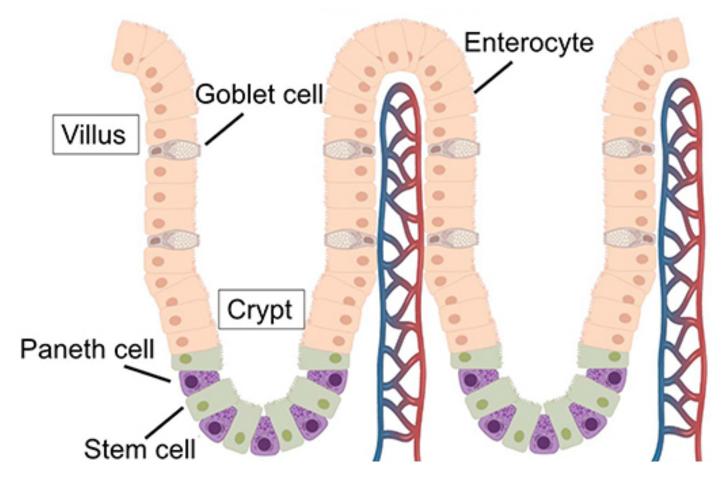
Intestinal villi

- Minute projections from mucous membrane of SI
- lined by columnar cells called enterocytes
- microvilli are hair-like projections on enterocytes
- Villi and microvilli *\surface* area
- Within each villus blood vessels & central channel called lacteal→opens into lymphatic vessels.

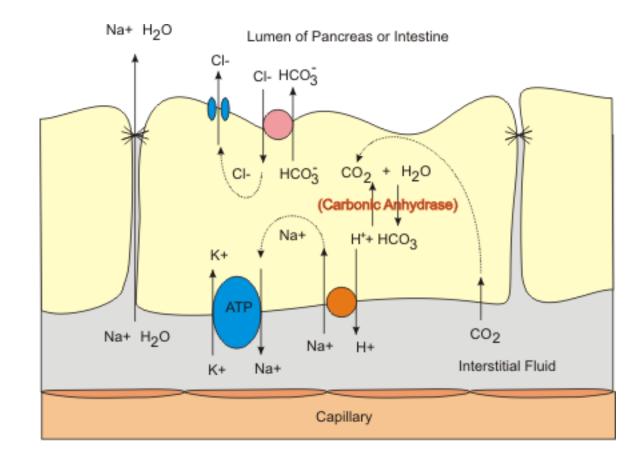
Secretions of Small Intestine=succus entericus.

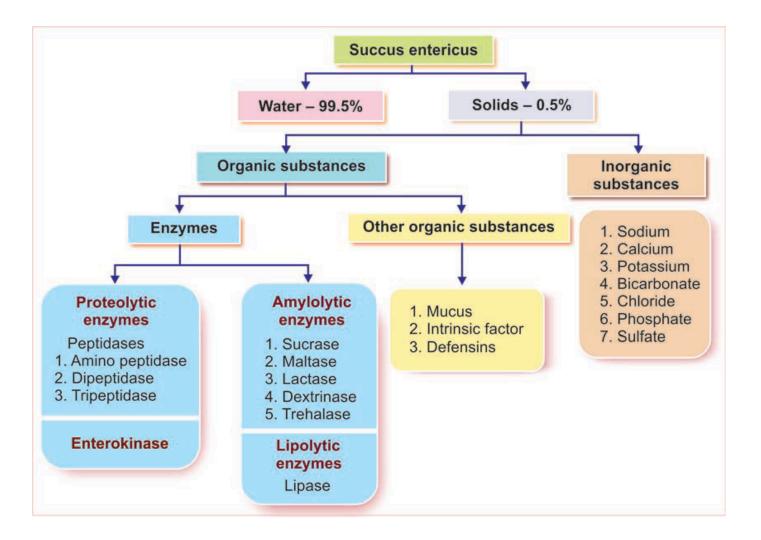
• Brunner's glands in duodenum

- Compound mucus gland in D between pylorus & papilla of Vater
- Secrete alkaline (high HCO3) mucus
- Protects mucosa from acidic chyme
- Stimulated by
- 1. Local irritation
- 2. Vagus (Ach) $\rightarrow \uparrow$ secretion
- 3. Secretin
- Inhibited by sympathetic-excitement \rightarrow unprotected D \rightarrow 50 % of persons with peptic ulcers


Secretions of Small Intestine

- Crypts of Lieberkühn= intestinal glands
- In D
- Lie between intestinal villi.
- Secrete alkaline water-like fluid


Crypts of Lieberkühn


- ✓ Surfaces of crypts and villi are covered by 2 types of epithelial cells:
- **1.** Goblet cells
- ✓ Moderate in number
- ✓ Secrete mucus \rightarrow lubricating & protecting intestinal surfaces
- 2. Enterocytes
- ✓ Large in number
- ✓ Secrete large quantities of H2O & electrolytes
 - ✓ almost pure ECF
 - ✓1800 ml/day
 - ✓pH 7.5 8.0
- \checkmark Reabsorb H2O & electrolytes with end products of digestion.
- ✓ Secrete digestive enzymes

- The life cycle of an intestinal epithelial cell is about 5 days.
- The epithelial cells deep in the crypts of Lieberkühn continually undergo mitosis.
- As the villus cells age, they are finally shed into the intestinal secretions.

Mechanism of Secretion of Watery Fluid
(1)Active secretion of Cl into the crypts
(2)Active secretion of HCO3
(3)Active secretion of Cl & HCO3 causes electrical attractiveness of Na
(4)All these ions together cause osmotic movement of H2O.

Digestive Enzymes Secretion by enterocytes

- (1) Peptidases for splitting small peptides into amino acids
- (2) Sucrase, maltase, isomaltase, and lactase—for splitting disaccharides into monosaccharides
- (3) Intestinal lipase for splitting neutral fats into glycerol and fatty acids.

Enzyme	Substrate	End products	
Peptidases	Peptides	Amino acids	
Sucrase	Sucrose	Fructose and glucose	
Maltase	Maltose and maltriose	Glucose	
Lactase	Lactose	Galactose and glucose	
Dextrinase	Dextrin, maltose and maltriose	Glucose	
Trehalase	Trehalose	Glucose	
Intestinal lipase	Triglycerides	Fatty acids	

Regulation of secretion of succus entericus

Nervous regulation

parasympathetic \rightarrow vasodilatation & \uparrow secretion Sympathetic \rightarrow vasoconstriction & \downarrow secretion local nervous reflexes (stimulated by tactile stimuli or irritation)

 $\rightarrow \uparrow$ secretion

Hormonal regulation

Enterocrinin, secretin and cholecystokinin $\rightarrow \uparrow$ secretion

Pathophysiology of SI

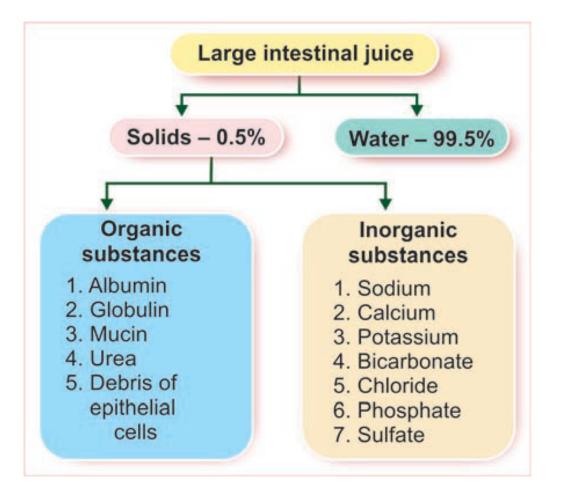
1. Malabsorption

Failure to absorb nutrients such as proteins, carbohydrates, fats and vitamins.

2. Malabsorption syndrome

- $\checkmark\,$ Failure of digestion and absorption in SI.
- ✓ Caused by Crohn's disease, tropical sprue, steatorrhea and celiac disease.

Crohn's disease or enteritis


- Enteritis is an inflammatory bowel disease (IBD)= inflammation of SI.
- affects lower part of SI, the ileum.
- Caused by abnormalities of the immune system resulting in inflammation of intestine.
- Malabsorption of vitamin
- Diarrhea
- Delayed or stunted growth in children.

Celiac disease/ gluten-sensitive enteropathy/celiac sprue/ non-tropical sprue

- Autoimmune disorder
- Damage of mucosa and atrophy of villi in small intestine→impaired digestion and absorption.
- Caused by gluten (present in wheat, oats, rye, barley and other grains)
- Diarrhea & Steatorrhea

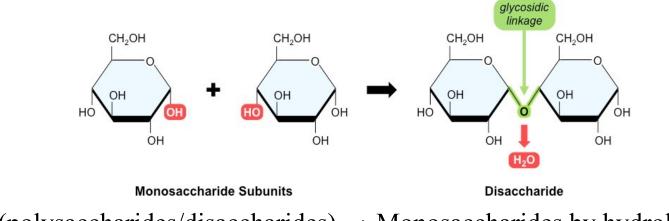
Secretions of the Large Intestine

- Large intestine also contains crypts of Lieberkühn but there are no villi or enzymes.
- Crypts mainly secrete alkaline (HCO3, pH of 8.0.) fluid
- Neutralize acids formed by bacterial action in LI
- Mucus in LI protects intestinal wall against excoriation & provides an adherent medium for holding fecal matter together
- LI excretes heavy metals like mercury, lead, bismuth & arsenic

Regulation of Secretions of the Large Intestine

- Regulated principally by direct, tactile stimulation of LI & local nervous reflexes
- Mucus secretion increased by parasympathetic stimulation (pelvic nerves)
- Irritation \rightarrow Excess Secretion of H2O & Electrolytes \rightarrow Diarrhea

Digestion in the Gastrointestinal Tract


Digestion in the Gastrointestinal Tract

Major foods: carbohydrates, fats & proteins Cannot be absorbed in their natural forms through GI mucosa→ digestion into small compounds for absorption Minors: vitamins and minerals

Digestion of the various foods by hydrolysis

Hydrolysis of Carbohydrates.

Monosaccharides bound to one another by **condensation**. H+& OH– removal \rightarrow H2O & disaccharides

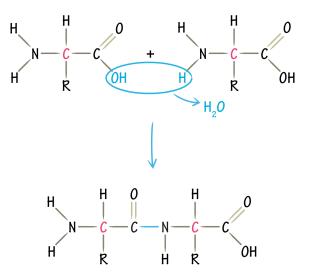
Carbohydrates (polysaccharides/disaccharides) → Monosaccharides by hydrolysis

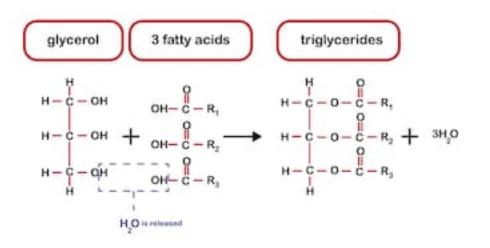
Enzymes in digestive juices return H+& OH– from H2O

$$R'' - R' + H_2O \xrightarrow{\text{Digestive}} R''OH + R'H$$

Peptide Bond Formation

Formation of Proteins


Multiple amino acids bound by peptide linkages. H+& OH− removal→ H2O & dipeptide


Hydrolysis. proteolytic enzymes return H+& OH- from H2O to protein molecules to split them into amino acids.

Formation of TG

Diet mainly consists of TG = 3 fatty acid + glycerol During condensation, 3 H2O molecules removed.

Hydrolysis :reverse process: fat-digesting enzymes return 3 H2O molecules to TG splitting fatty acid from the glycerol

3 types of carbohydrates:1. Polysaccharides

glycogen, amylose and amylopectin, which are in the form of starch (glucose polymers). Glycogen is available in non-vegetarian diet.

Amylose and amylopectin are available in vegetarian diet because of their plant origin.

2. Disaccharides

Two types of disaccharides are available in the diet. Sucrose (Glucose + Fructose)= table sugar or cane sugar Lactose (Glucose + Galactose), milk sugar

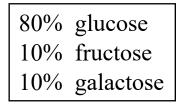
3. Monosaccharides

glucose and fructose.

Other carbohydrates in the diet include i. Alcohol ii. Lactic acid iii. Pyruvic acid iv. Pectins v. Dextrins vi. Carbohydrates in meat vii. Cellulose

Carbohydrate Foods of the Diet

- 3 major sources of carbohydrates in diet
- 1. sucrose (disaccharide)
- 2. lactose (milk disaccharide)
- 3. starches (polysaccharides)
- Others -amylose, glycogen, alcohol, lactic acid, pyruvic acid, pectins, dextrins
- Large amount of cellulose, no human enzymes for hydrolyzing cellulose →cellulose cannot be considered food for humans.


Digestion of Carbohydrates

- Starch digestion
 - **Mouth**-Begins with ptyalin (α -amylase) in saliva (5% digestion in mouth (short Time stay, Starch \rightarrow Maltose & 3 -9 glucose polymers
 - **Stomach** up to 40% in stomach, mainly maltose -1 hr digestion, salivary amylase is blocked by gastric acid
 - Small intestine-powerful pancreatic amylase-15-30 min after chyme emptying to D →all carbohydrates digested, totally converted into maltose and/or other small glucose polymers.

Digestion of Carbohydrates

- Starch digestion -
 - Final digestion occurs at the intestinal microvilli brush border
 - Enterocytes lining villi of SI contain enzymes (lactase, sucrase, maltase, α -dextrinase & trehalase \rightarrow splitting disaccharides lactose, sucrose, and maltose, trehalose, plus other small glucose polymers \rightarrow monosaccharides.

•Final products of carbohydrate digestion are all monosaccharides/all water soluble and are absorbed immediately into the portal blood.

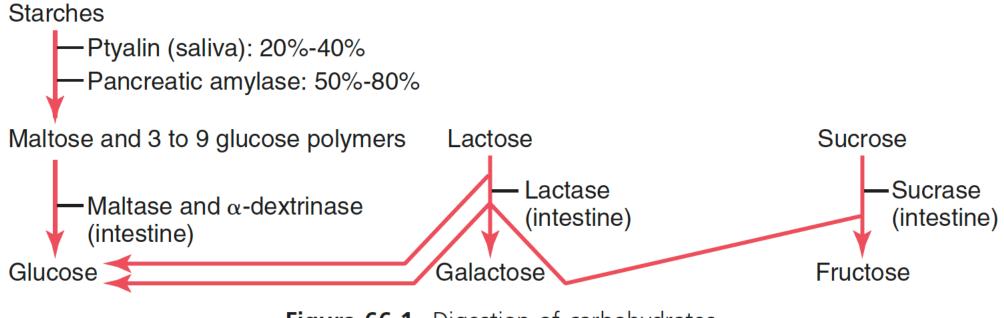


Figure 66-1. Digestion of carbohydrates.

TABLE 45.1: Digestion of carbohydrates

Area	Juice	Enzyme	Substrate	End product
Mouth	Saliva	Salivary amylase	Polysaccharides – cooked starch	Disaccharides – dextrin and maltose
Stomach	Gastric juice	Gastric amylase	Weak amylase	The action is negligible
Small intestine	Pancreatic juice	Pancreatic amylase	Polysaccharides	Disaccharides – Dextrin, maltose and maltriose
		Sucrase	Sucrose	Glucose and fructose
		Maltase	Maltose and maltriose	Glucose
	Succus entericus	Lactase	Lactose	Glucose and galactose
		Dextrinase	Dextrin, maltose and maltriose	Glucose
		Trehalase	Trehalose	Glucose