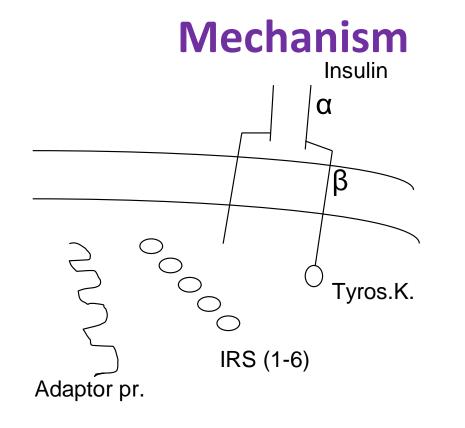
Insulin Lecture 3

Prof. Ahmed Shaaban


Professor of Pharmacology & Senior Consultant of Endocrinology

Insulin

Islets of pancreas secrete 5 hormones by 4 cell types:

α (glucagon), β (insulin & amylin), delta (somatostatin) and epsilon (ghrelin). Amylin \downarrow appetite & food intake, slows gastric emptying and \downarrow glucagn secretion. Ghrelin \uparrow appetite & food intake.

- Insulin receptors (in all tissues) consist of 2 extracellular α subunits (for insulin binding) 2 β subunits (along cell membrane with intracellular end carrying tyrosine kinase).
- Insulin binding ↑ phosphorylation of tyrosine kinase causing phosphorylation cascade of proteins with insulin signaling.
- The 1st are the docking proteins insulin receptor substrates
- (IRS-1IRS-6). Then phosphorylation of adaptor proteins.
- This activates enzymes & carrier for transport.
- Insulin receptor number is \uparrow by \downarrow body weight, high fiber diet, exercise & oral hypoglycemics.
- Insulin receptor number is \downarrow by obesity, simple sugars, sedentary life & other hormones.

Actions

Anabolic, \rightarrow storage of the 3 macronutrients.

- A) On carbohydrates:
- \uparrow uptake, utilization of glucose & storage of glycogen \rightarrow hypoglycemia.

1. \uparrow cellular uptake of glucose (with K+) by facilitating its diffusion across cell membranes except in brain, RBC, intestine & kidney. By stimulation of 5 glucose transporters, e.g. Glut 4 in skeletal muscles & fat and Glut 2 in β cells of pancreas for insulin release.

- 2. ↑glycolysis.
- 3. \uparrow glycogenesis (\uparrow glycogen storage) in liver & skeletal muscles and \downarrow glycogenolysis.
- B) On proteins:

 \uparrow cellular uptake of amino acids (\uparrow amino acids transporters), incorporation integration proteins (anabolic) & \downarrow gluconeogenesis.

C) On fats:

- 1. \downarrow lipolysis in fat cells by inhibiting hormone sensitive (intracellular) lipase enzyme $\rightarrow \downarrow$ FFAs mobilization to blood.
- 2.[↑] lipogenesis:
- Converts glucose $\rightarrow \rightarrow$ fats mainly in adipose tissue.
- Insulin + lipoprotein lipase are complementary.
- Insulin \uparrow fat synthesis (from glucose) in liver and \uparrow blood triglycerides & cholesterol levels. Then lipoprotein lipase (in capillaries) \rightarrow conversion of triglycerides in lipoprotein to free fatty acids \rightarrow circulation \rightarrow export of triglycerides (via VLDL) to adipose tissue. More in metabolic syndrome.
- 3.1 formation & \uparrow uptake of ketone bodies.

In fed state insulin release †glycolysis, glycogenesis & lipogenesis.

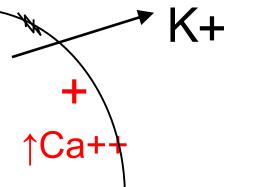
In fasting: \uparrow growth h., glucagon & epinephrine $\rightarrow \uparrow$ fatty acids oxidation (\rightarrow fewer free radicals \rightarrow antioxidant & antiinflammatory), \downarrow glucose oxidation & \uparrow gluconeogenesis \rightarrow preserve glucose for brain.

D) Vascular insulin actions: \uparrow NO, VD, \downarrow vascular smooth m. proliferation, \uparrow microvascular blood flow & \downarrow platelet aggregation. <u>Antagonizes renin angiotensin actions which \rightarrow opposite....& \downarrow glucose uptake.</u>

- A, B & C : metabolic.
- D : vascular.

Control of insulin release

Normally 50% of daily insulin is basal & 50% PP.


Insulin daily requirements: 0.5- 1 u/Kg. 个in puberty, pregnancy & medical diseases.

Increase by

1. Glucose $\rightarrow \uparrow ATP \rightarrow closure of ATP$ - sensitive K+ channels $\rightarrow depolarization \rightarrow opening of voltage dependent Ca++ channels <math>\rightarrow \uparrow Ca++ influx \rightarrow release of stored insulin (rapid) followed by slow release (newly formed insulin).$

The 1st phase (& later phase 2) is impaired in T2DM, both in T1DM.

Amino acids & free fatty acids augment glucose – induced insulin release. Insulinogenic: carbs > proteins > fats. $K+ \int of$

.2. Sulfonylurea: by closing ATP- sensitive K+ channels

3. - 10...

Decrease by:

1. Hypokalemia by e.g. thiazides, loop diuretics & diazoxide. They are K+ channel openers, increasing K+ efflux \rightarrow hyperpolarization.....

Types of Diabetes Mellitus

It is a syndrome characterized by disturbance in carbohydrate, protein & fat metabolism beside vascular complications.

Manifested by polyuria, polydepsia, polyphagia, \uparrow or \downarrow body wt. &....

Clinical in 16% of population (diagnosed in 8%).

75% of inpatients are diabetics.

B) Secondary diabetes: by endocrine diseases causing hyperglycemia as Cushing disease, acromegaly, pheochromocytoma and by hyperglycemic drugs (type 3). Gestational (pregnancy) diabetes is type 4. In 5-10% of pregnant. $30 - 60 \% \rightarrow T2DM$.

A) Primary:

Type 1 DM (IDDM) Insulin dependent

- Age:
 Young (<30 years)</th>

 At 1-2 & 17 years in 75%.
- **%** < 10%
- **Symptoms**: Appear rapidly, with marked hyperglycemia.
- Ketosis: Common
- **Obesity**: Not common (thin)
 - due to \downarrow insulin (anabolic)

- Insulin
- ttt.InsulinFamily hist.Not common (10%)

Type 2DM (NIDDM)

Insulin receptors dependent

Adult (>40 years)

Now.....younger.

> 90%

Slowly, with mild or mod. hyperglycemia.

Rare (insulin is enough to prevent ketosis but not hyperglycemia) Common (the anabolic insulin is present) Variable (↑ then↓) Oral antidiabetics Common

T1DM

Type la: >95%. Autoimmune.

Viral infection of β -cells in genetically predisposed pts.

→ mild hyperglycemia → healing & recovery (honey moon period) → autoimmune reactions → destruction of these cells (>90% at diagnosis) → severe hyperglycemia.

Contribution is genetic (1/3) in pts. with HLA-DR3 & 4 (regulate immune response) and environmental (by viruses).

Screening done at time of diagnosis shows high circulating levels of antibodies to insulin and components of insulin receptors .

Type lb: <5%. Idiopathic.

T2DM

A) Hereditary. Contribution is mainly genetic (strong). Mainly in 1st degree family history relatives (parents & siblings).

B) Environmental:

1. Obesity. Mainly visceral (metabolic) obesity more than SC abdominal fat due to its link with insulin resistance.

- 2. 个diet sugars & other drugs with high glycemic or insulin index.
- 3. Lack of exercise.
- 4. Emotions.
- 5. Periodontitis, intestinal dysbiosis and vitamin & mineral deficiency.

Insulin resistance (receptor or post-receptor defect) \rightarrow

1. 个insulin release.

2. \downarrow insulin release by exhaustion of β -cells (2ry failure).

Metabolic syndrome

(insulin resistance syndrome, X syndrome)

Most important factor in development of T2DM.

Very common, with many associations:

- 1. 个body wt.
- 2. ↑BP.
- 3. **↑**plasma lipids .
- 4. **A plasma insulin then glucose.**

5. \uparrow prothrombotic & proinflammatory state (\uparrow CRP), thrombophilia & oxidative stress. Astherosclerosis.

6. 个uric acid.

7. Fatty liver. NAFLD is better predictor of cardiovascular disease & mortality. Also cholecystitis & gall stones. \uparrow GGT.

- 8. Polycystic ovary syndrome.
- 9. Rheumatoid arthritis.

Causes of metabolic syndrome:

- 1. Life style....
- 2. Periodontitis:
- Bidirectional relationship between periodontitis & DM.
- Predictor of mortality.
- 3. Intestinal dysbiosis:
- 4. Deficiency of Mg, K, vit. D, omega 3 fatty acids, Insulin resistance ttt.:
- 1. Life style modification of diabetics......
- 2. Metformin.
- 3. Pioglitazone (insulin sensitizer).
- 4. ACEIs & ARBs:

Stages of diabetes – induced metabolic syndrome

A. Impaired glucose tolerance (prediabetes): 10 years, with complications.

B. Metabolic diabetes: Hyperglycemia.

Hypoglycemia \rightarrow many complications as cardiovascular & \uparrow mortality.

Brittle diabetes is that with unstable blood glucose levels (marked fluctuations). Food \rightarrow marked hyperglycemia. Normally this is compensated by \uparrow insulin release $\rightarrow \uparrow$ glycogen storage & \uparrow glucose uptake & utilization. \downarrow insulin activity in diabetics reduces glycogen storage & \downarrow glucose uptake & utilization. Fasting \rightarrow hypoglycemia because low glycogen stores cannot supply enough glucose by \uparrow glycogenolysis induced by other hormones.

C. Vascular diabetes: Microvascular (& macrovascular) complications (we are as old as our arteries, carotid intima media thickness).

Tight glycemic control improves micro & not macroangiopathy.

 \downarrow 1% HbA1c $\rightarrow \downarrow$ microvascular complications by 40% & mortality by15%.

D. Cancer: By \downarrow immunity, \uparrow insulin \rightarrow \uparrow growth..., cancer cells need glucose