Oral antidiabetics (1) Lecture 5

Prof. Ahmed Shaaban

Professor of Pharmacology & Senior Consultant of Endocrinology

Oral antidiabetics

Pt.- centered approach > guidelines.

Antidiabetic combination is better than maximizing the dose.

A) Oral hypoglycemics (Insulin secretagogs) 1. Sulfonylurea

Mechanism:

- 1. Closure of K channels...
- 2. Direct ↑ insulin exocytosis.
- 3.↑ sensitivity and number of insulin receptors.
- 4. ↓ plasma glucagon.

Uses:

Type 2 DM if pt. fails to respond to lifestyle modification for 3 months and no contraindications. Before meals.

Contraindications:

- 1. Uses of insulin except 7.
- 8. Decrease dose in old & renal disease.
- 9. Hypersensitivity reactions.

Adverse effects:

- 1. Hypoglycemia especially by glibenclamide. Caution in old & CV pts.
- 2. 个body weight
- 3. 2ry failure & tachyphylaxis: by exhaustion of insulin stores
- 4. GIT upset.
- 5. Teratogenicity (pass placenta)
- 6. Allergic reactions as skin rash (related to sulfonamide).

Interactions:

- 1. β blockers \rightarrow hypoglycemia.
- 2. Hyperglycemic drugs as corticosteroids \downarrow hypoglycemic effects.
- 3. Drugs highly bound to PP as NSAIDs & oral anticoagulants \rightarrow \uparrow free level \rightarrow potentiation.
- 4. Enzyme inducers as rifampin \rightarrow antagonism.

Preparations:

2nd generation: More potent & less adverse effects.

1. Glipizide:

Shortest t½ (3hs.). Also extended release preparations for 24 hours, once in the morning (but loss of benefit).

Preferred in old age & renal dysfunction to avoid hypoglycemia.

Gliclazide: .2 •

Intermediate potency and duration. 80mg.

Once daily (MR) tablets (30-60 mg) are used.

3. Glibenclamide (glyburide):

Most potent and longest duration (12-24 hs.).

CI in old age & renal dysfunction.

5mg. 1-4 tablet /day.

3rd generation:

Glimepride: binds to different receptors. Rapid association with receptors (\rightarrow rapid insulin release) and rapid dissociation (\rightarrow less \uparrow insulin & hypoglycemic risk and less \uparrow Wt.).

Intermediate – long duration (12-24 hs.). Its peak effect is 4hs. Food at this time is important to avoid hypoglycemia.

Dose: 1-8 mg once daily orally just before major meal.

Meglitinides2. •

Mechanism:

Similar to sulfonylurea but no direct exocytosis.

Very rapid onset & peak (1 hour) achieve meal (PP) hyperglycemic control. Short duration (4 hours) due to effective hepatic clearance → less hypoglycemia & less ↑ body wt.

Uses, CI & adverse effects: Similar to sulfonylurea.

e.g. repaglinide orally 0.25, 0.5, 1 or 2 mg (according to amount of carbohydrate in meal) before each meal.

Caution in liver dysfunction. Affected by enzyme inducers & inhibitors and can be given in renal dysfunction & old pts.

Nateglinide is similar.

B) Euglycemics •

Unlike oral hypoglycemics:

- 1. No ↑ insulin release (Non insulin secretagog).
- 2. No \downarrow blood glucose below normal.
- 3. No 个 body wt.

1. Metformin

Mechanism:

A biguanide. It primarily ↓ fasting glycemia and mildly PP hyperglycemia.

1. \downarrow glucagon - dependent hepatic glucose production (\downarrow glycogenolysis & gluconeogenesis) in fasting state $\rightarrow \downarrow$ fasting blood glucose. Major action.

- 2. Inhibits mitochondrial respiratory chain (complex 1) \rightarrow uncoupling of oxidative phosphorylation \rightarrow \uparrow anerobic glycolysis \rightarrow
- \uparrow fatty acid oxidation & glucose uptake & utilization $\rightarrow \downarrow$ PP hyperglycemia.
- \downarrow lipogenesis & cholesterol synthesis $\rightarrow \downarrow$ postprandial hyperlipidemia.
- 3. ↓carbohydrates & fat absorption in GIT.
- 4. \uparrow insulin sensitivity by \uparrow activation of insulin receptors & IRSs $\rightarrow \uparrow$ phosphorylation of GLUT4 $\rightarrow \uparrow$ peripheral glucose uptake.
- 5. ↓plasma glucagon.
- 6. Beneficial effect on gut microbiota (x intestinal dysbiosis).

Pharmacokinetics:

Absorbed orally, wide distribution into various tissues.

Not highly bound to plasma proteins & not metabolized.

Uses:

- 1. Type 2DM (1st line) with or without other oral antidiabetics. Mainly in middle (< 60 years) age, obese diabetics.
 - \downarrow diabetic complications & mortality.
- 2. Macrovascular & microvascular diabetic complications.
- Other drugs affect only microvascular complications.
- Cardiovascular diseases cause 50% of diabetic morbidity & mortality.
- 3. Metabolic syndrome & prevention of diabetes. It does not prevent diabetes in old & leaner prediabetics. Even by 250 mg.
- 4. Obesity. 5. NAFLD. 6. Polycystic ovary syndrome.
- 7. \downarrow cancer risk mainly in higher doses and \uparrow cytotoxicity by cytotoxic drugs or radiotherapy.

Adverse effects:

- 1. GIT upset, flatulence.... Start with small dose.
- ↓absorption of vit. B12. Deficiency after years.
 But neuropathy....
- 3. Lactic acid acidosis (by anerobic glycolysis).
- 4. Contraindicated (not absolute) in severe heart, lung, liver & renal dysfunction (risk of lactic acid acidosis).

Dose:

Metformin (Glucophage) 500 mg orally with meals.

Also slow (extended) release long acting formulations 850 & 1000mg. 1-3 times daily. They \rightarrow less GIT side effects.

α glucosidase inhibitors .2 •

Mechanism: compete with oligosaccharides (as sucrose) for α glucosidase in brush border of intestine, decreasing glucose absorption, reducing PP hyperglycemia .

Used alone or with oral hypoglycemics or metformin. Low efficacy.

If hypoglycemia: ttt by glucose & not sucrose.

Uses:

- 1. Type 2DM ttt & prophylaxis.
- 2. Obesity.
- 3. Prophylactic in hypertension and \downarrow cardiovascular risk & complications. By \downarrow PP hyperglycemia, glucose variability, \downarrow Wt., on gut microbiota.

Adverse effects:

- 1. GIT upset, flatulence, diarrhea. Poor tolerance.
- 2. Reversible \uparrow in liver enzymes (caution in liver diseases).
- 3. Contraindicated in renal dysfunction (excretion is renal).
 - e.g. acarbose. 25-100 mg before each meal.

