Oral antidiabetics (2) Lecture 6

Prof. Ahmed Shaaban

Professor of Pharmacology & Senior Consultant of Endocrinlogy

C) Insulin sensitizers(Thiazolidinediones)

Mechanism:

They stimulate nuclear peroxisome proliferator activated receptor γ (PPAR- γ), in muscles, fat, liver & adipose tissue. PPAR- γ receptors modulate expression of genes for insulin signal transduction and glucose & fat metabolism.

They \uparrow release adiponectin and \downarrow resistin (from adipocytes) which \uparrow & \downarrow tissue sensitivity to insulin respectively. They \uparrow expression of GLUT4 and \downarrow blood glucose, free fatty acids & triglycerides. They \downarrow LDL & \uparrow HDL. They improve fatty liver. They also \downarrow prothrombotic & proinflammatory (as CRP) diabetic effects

Uses:

Type 2 diabetics as monotherapy or combination with oral hypoglycemics or euglycemics. They do not cause hypoglycemia.

Adverse effects & contraindications

- 1. Hepatotoxicity. Contraindicated in liver diseases.
- 2. Fluid retention: edema, CHF and 个body wt. (also by 个total fat mass). Also macular edema & dilutional anemia.
- 3. \downarrow bone density & \uparrow fracture risk: by \downarrow osteoblast formation.
- 4. Contraindicated in pregnancy and may induce ovulation.
- e.g. pioglitazone is metabolized by CYP to active metabolite.
- Orally, once daily, 7.5 \rightarrow 45 mg.

N.B.

- GLUT4:↑ by insulin (& metformin & pioglitazone), translocated by exercise & ↑genetic coding by T4.
- Lipoprotein lipase: lipemia clearing. 个by insulin.
- Hormone sensitive lipase: ↑ lipolysis in adipose tissue. ↓by insulin,
- \uparrow by epinephrine (β1) & cortisol, $\rightarrow \uparrow$ cholesterol e.g. in stress.
- \uparrow genetic coding by T4 \rightarrowbut \rightarrow more cholesterol secretion $\rightarrow \downarrow$ cholesterol.

D) Incretins

Glucagon — like peptide -1 (GLP- 1) is a gut hormone with rapid proteolysis (also renal clearance). It amplifies insulin release by oral glucose more than by IV glucose. ↓early in type 2 diabetics (& in prediabetics).

Actions:

1. Amplifies glucose – induced insulin release & \uparrow insulin sensitivity peripherally. Unlike sulfonylurea, it causes mild \uparrow insulin release during fasting and at normoglycemic concentration \rightarrow less hypoglycemic risk.

Unlike sulfonylurea, which accelerate β cell failure, it preserves islet integrity, with \uparrow regeneration & \downarrow apoptosis.

- $2.\downarrow$ glucagon secretion.
- 3. ↓gastric emptying \rightarrow sensation of abdominal fullness + ↓ intestinal absorption.
- Central anorexia.

GLP-1R agonists .1 • (GLP-1 analogs)

Mechanism:

Synthetic long acting analogs of GLP-1. They are full agonists in GLP-1 receptor. They have actions of GLP-1 but less proteolysis.

Uses:

In type 2 diabetics, it may be given as adjuvant if there is inadequate control by oral antidiabetics.

Adverse effects:

- 1. Anorexia & nausea in 40% of pts. (↓body wt.).
- 2. Hypoglycemia: more if combined with sulfonylurea.
- 3. Acute pancreatitis.
- 4. Nephrotoxicity.
- 5. Delay gastric emptying $\rightarrow \downarrow$ absorption of e.g. antibiotics & oral contraceptives (should be taken 1 hour before exenatide).

Preparations

1. Exenatide:

By SC injection before meals twice daily, as fixed-dose pens (5 & 10 ug) 1 hour before breakfast & dinner .

Contraindicated in renal dysfunction.

- Exenatide LAR is long acting (once weekly), as powder diluted just before use.
- 2. Liraglutide:
- 3. Dulaglutide.

DPP-4 inhibitors .2.

Mechanism:

Selective oral inhibitors of dipeptidylpeptidase (DPP-4), the plasma enzyme which rapidly inactivates GLP-1 \rightarrow prolonged action .

They ↑ plasma GLP-1 & insulin concentration.

They have other actions of GLP-1 but do not cause nausea, vomiting, with less wt. loss .

By inhibition of proteolysis, it also prolongs actions of GIP (gastric inhibitory polypeptide), neuropeptide Y, substance P, cytokines and growth factors.

Mainly renal clearance.

Uses:

Oral, once daily in type 2DM, with or without food, alone or combined with other oral antidiabetics or insulin. Dose is \downarrow in renal dysfunction.

Adverse effects:

Much lower incidence than other oral antidiabetics.

- 1. GIT upset.
- 2. Minimal hypoglycemia, except if combined with sulfonylurea or insulin.
- 3. Nasopharingitis & upper respiratory tract infection.
- 4. Headache.
- 5. Hypersensitivity reactions.
- 6. Pancreatitis.

Preparations:

- 1. Sitagliptin: 100 mg.
- 2. Vildagliptin: 50 mg.
- 3. Alogliptin: 25 mg.
- 2 & 3 are not used in liver dysfunction.
- 4. Linagliptin: 5 mg, no dose adjustment in renal or hepatic impairment. Not with enzyme inducers.

E) Sodium glucose co-transporter 2 (SGLT2) inhibitors

Mechanism:

Inhibit **SGLT2** in renal PCT (.....1 in intestine) \rightarrow lowering of plasma glucose threshold from 180 to 90 mg%. This inhibits 90% of glucose reabsorption \rightarrow glycosuria.

They \downarrow body Wt. & BP by glucose loss & diuresis respectively.

Efficacy is reduced and are contraindicated in renal dysfunction.

Uses:

Type 2 DM with normal renal function.

Effective in advanced cases with loss of β - cells reserves.

Oral, once daily before 1st meal.

Adverse effects:

- 1. Polyuria & genitourinary infection. Mild, more in women.
- 2. Mild hypoglycemia in combination with insulin or sulfonylurea.
- 3. Bone fractures. Mainly canagliflozin.

Preparations:

- 1. Canagliflozin: 100mg.
- 2. Dapagliflozin: 10mg (5 mg in liver dysfunction).
- 3. Empagliflozin: 10mg.

Used in Type 2 DM with cardiovascular disease (\downarrow cardiovascular morbidity & mortality