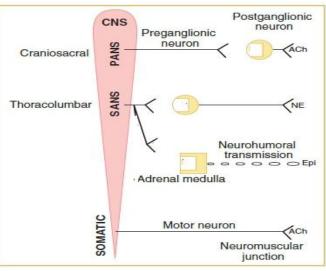

OF NEUROSCIENCE-II (PNS) MODULE


PHARMACOLOG

BY DR.SHERIF AHMED SHALTOUT

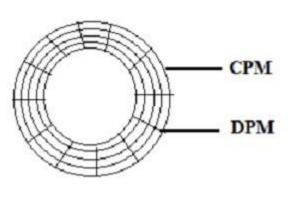
2020/2021

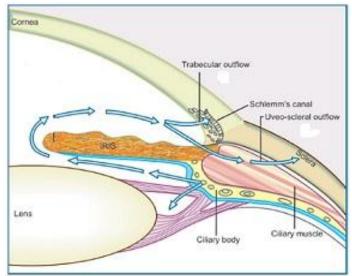
AUTONOMIC NERVOUS SYSTEM PHARMACOLGY

The involuntary effector organs controlled by A.N.S. are:

a) Heart: Cardiac properties include:

1- Automaticity (the ability of pacemaker cells to initiate an impulse) and rhythmicity.


- 2- Conductivity (the impulse is conducted in atria, AV node & bundle, and ventricles).
- 3- Excitability (the ability of cardiac cells to respond to external stimuli).
- 4- Contractility.


* The cardiac properties also determine the cardiac output (COP = SV X HR) and myocardial oxygen requirements.

b) Smooth muscle fibers (SMF):

1- Blood vessels: especially the arterioles, which determine the total peripheral resistance (TPR) and arterial blood pressure (ABP: SBP depends on COP & TPR while DBP depends on TPR).

2- Eye: dilator pupillae muscle (DPM), constrictor pupillae muscle (CPM), and ciliary muscle & ciliary body.

3- Bronchi

- 4- GIT & Urinary bladder: both in the wall and sphincters.
- 5- Sex organs: The uterus the male sex organs.

c) Exocrine glands:

Including salivary, lacrimal, bronchial, gastric (secreting HCl), intestinal, and sweat glands.

	Sympathetic	Parasympathetic	
1- Origin	Thoraco-lumbar (T1 to L2 or	Cranio-sacral (III, VII, IX, X	
	L3)	and S2–S4)	
2- Ganglia	Away from the organs	On or close to the organ	
	(paravertebral)	(terminal)	
3- Preganglionic fiber	Short	Long	
4- Postganglionic fiber	Long	Short	
5- Neurotransmitter	Major: noradrenaline (NA)	Major: acetylcholine (ACh)	
	and adrenaline		
6- Stability of	NA: stable, diffuses for wider	ACh: rapidly destroyed	
transmitter	actions	locally	
7- Function:			
• CVS:	* ↑ all cardiac properties,	* \downarrow all cardiac properties	
	COP and myocardial O_2	(except atrial conduction↑),	
	consumption	COP and myocardial O_2	
		consumption	
• SMF:	* V.C. of blood vessels	No offect (most blood weeks)	
*Bl.vesseles	except skeletal & coronary	No effect (most blood vessels	
	\rightarrow VD	are non-innervated by parasympathetic But contain	
		muscarinic receptors \rightarrow VD	
		by release of NO) by release of NO)	
		by folcuse of five)	
	* ↑ blood pressure	* \downarrow blood pressure	
	'	v ologa pressure	
* eye	Mydriasis	Miosis, accommodation for	
		near vision, \downarrow IOP	
*Bronchi	Dilatation	Constriction	
*GIT & urinary	Relax wall and contract	Contract wall and relax	
	sphincters sphin		
. ~	Figure in male		
* Sex organs Ejaculation in male E		Erection in male	
• Exocrine gl.:	↑ secretion (scanty, viscid)		
* salivary	↑ sweat:	↑secretion (profuse, watery)	
* sweat	- thermotegulatory glands	No effect	
	present all over the body but		
	cholinergic transmission		
	1	l	

* Differences between sympathetic and parasympathetic divisions of ANS

Important Notes:

1) Most of the involuntary organs receive "dual (double) innervation".

2) The predominant tone in these organs is usually parasympathetic; except in stress conditions (fear, fight, exercise) when the sympathetic tone becomes predominant.3) Few organs have single innervation;

<u>Sympathetic only</u>: Ventricles of the heart, most blood vessels, dilator pupillae muscle, sweat glands, adrenal medulla (which is considered as a "modified sympathetic ganglion), and erector pili muscles,

<u>Parasympathetic only</u>: Constrictor pupillae muscle and ciliary muscle.4) In most involuntary organs receiving dual innervation, sympathetic and parasympathetic actions are antagonistic except the action on:

- a. Atrial conduction (both systems increase atrial conduction)
- b. Salivary glands (both increase salivation)
- c. Male sex organs is complementary to each other.

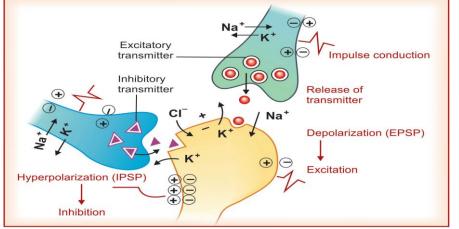
5) Both systems are controlled by higher centers in the hypothalamus and cerebral cortex.

6) The activity of A.N.S. is based on the presence of specific "neurotransmitters" acting on specific "receptors".

NEUROHUMORAL TRANSMISSION

- The nerves transmit their message across synapses and postsynaptic tissues by the release of humoral (chemical) messengers
- Steps in neurohumoral transmission:

I. Impulse conduction:


- Stimulation or arrival of an electrical impulse → ↑ Na⁺ influx → depolarization, then ↑ K⁺outflux → repolarization
- The action potential (AP) → activate ionic channels at the next excitable part of the membrane → propagation of the AP

II. Transmitter release

- The transmitter (excitatory or inhibitory) is stored in presynaptic nerve endings within 'synaptic vesicles'
- Nerve impulse → Ca²⁺entry → fusion of vesicles with axonal membranes → exocytosis of all contents of the vesicle (transmitter, enzymes and other proteins) in the synaptic cleft
- The release process can be modulated by the transmitter itself and by other agents through activation of specific presynaptic receptors

III. Transmitter action on postsynaptic membrane

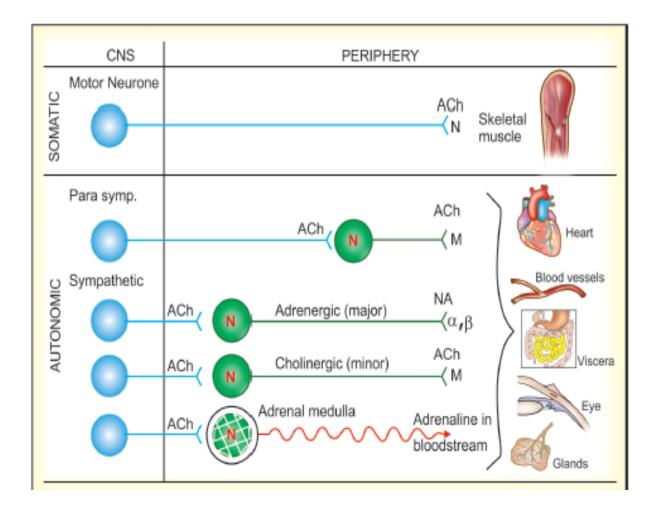
The released transmitter combines with specific receptors on the postsynaptic membrane → an excitatory postsynaptic potential (EPSP; by ↑ Na⁺ or Ca²⁺ influx→ depolarization) or an inhibitory postsynaptic potential (IPSP; by ↑ Cl⁻ influx or K⁺ outflux→ hyperpola).

IV. Postsynaptic activity

- EPSP → a propagated postsynaptic AP → nerve impulse (in neuron), contraction (in muscle) or secretion (in gland).
- IPSP stabilizes the postsynaptic membrane and resists depolarizing stimuli

V. Termination of transmitter action:

- 1- Local degradation (e.g. ACh)
- 2- Active reuptake into the presynaptic neuron by specific carrier proteins (transporters)
- 3- Diffusion away (e.g.NA)


COTRANSMISSION:

- The classical' one neuron—one transmitter' model is an over simplification.
- Most peripheral and central neurons on stimulation have been shown to release more than one active substance
- In the ANS, besides the primary transmitters ACh and NA, neurons have been found to release:
 - purines (ATP, adenosine),
 - peptides (vasoactive intestinal peptide or VIP, neuropeptide-Y or NPY, substance P, enkephalins, somatostatin, etc.),
 - nitric oxide (NO)
 - prostaglandins
- Function of contransmitters:
 - 1- Neuromodulator: Regulate the presynaptic release of the primary transmitter and/or postsynaptic sensitivity to it
 - 2- Act as an alternative transmitter having its own effects on postsynaptic structures

CHOLINERGIC PHARMACOLOGY

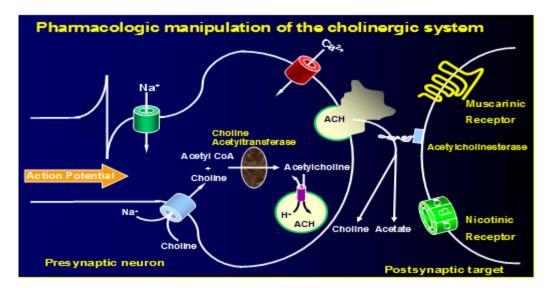
CHOLINERGIC TRANSMISSION

- Acetylcholine (ACh) is a major neurohumoral transmitter at autonomic, somatic as well as centralsites:
 - 1- All preganglionic fibers (parasymp. & symp.)
 - 2- All ganglia (parasymp. & symp.)
 - 3- All postganglionic parasympathetic fibers
 - 4- Postganglionic sympathetic fibers to sweat glands
 - 5- Adrenal medulla (modified sympathetic ganglion)
 - 6- Skeletal muscles (NMJ)
 - 7- CNS (cortex, basal ganglia, spinal cord and other sites)

Synthesis of Acetylcholine (ACh)

- Choline is transported by a membrane carrier (**Na**⁺: **choline cotransporter**) from the extracellular fluid into the cholinergic neuron
- Then, it is acetylated in the cytoplasm:

Acetyl CoEn-A+ choline

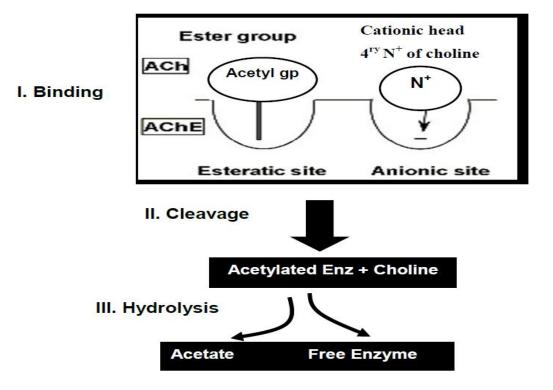

• *Hemicholinium* blocks choline uptake (the rate limiting step in ACh synthesis) and depletes ACh.

Storage of ACh

- ACh is stored in small membrane-bound vesicles, which are concentrated in the terminals of cholinergic neurons.
- *Vesamicol* blocks active transport of ACh into synaptic vesicles.

Release of ACh

- Arrival of an action potential triggers Ca²⁺influx, which stimulates release of ACh by exocytosis.
- Control of ACh release by **presynaptic receptors:**
 - $M_2 \rightarrow inhibitory$ (**dominant**).
 - $\alpha_2 \rightarrow$ inhibitory.
 - $N_n \rightarrow$ facilitatory.
- *botulinum toxin* inhibits ACh. release
 - It is exotoxin produced by Clostridium botulinum → 'botulism'(a type of food poisoning). →long-lasting loss of cholinergic transmission
 - Local injection of botulinum toxin-A (BOTOX) used in:
 - 1. *Spastic conditions* due to over activity of cholinergic nerves, e.g. spastic cerebral palsy, spasmodic torticollis
 - 2. *Beauty treatment*: removal of age-related facial wrinkles.
 - its incorrect injection or overdose → ptosis, diplopia, facials welling, dry mouth, dysphagia, dysarthria, muscular weakness and even respiratory paralysis



Termination of Acetylcholine

- Action of ACh is terminated by rapid hydrolysis by choline esterase.
- Hydrolysis by choline esterase enzyme through **3 steps**:
 - 1. <u>Binding:</u> The acetyl (ester) group of ACh binds to the esteratic site of the enzyme by a covalent bond

- The N^+ (cationic) head binds to the anionic site by a weaker ionic bond.

- 2. <u>Cleavage</u>: choline is cleaved leaving the acetylated enzyme.
- **3.** <u>Hydrolysis</u>: hydration of acetylated enzyme releases acetate & the free enzyme.

• Types of cholinesterase enzymes

True Cholinesterase	Pseudo Cholinesterase
(acetylcholinesterase = AChE)	(butyrylcholinesterase = ButyrylChE)
- Present at terminals of cholinergic	- Present in plasma, liver, Intestine, white
fibers & RBCs& gray matter.	matter.
- Hydrolysis: (specific to ACh.)	- Hydrolysis:(nonspecific to ACh.)
ACh: very fast	- ACh: slow
Methacholine: slower than ACh	- Methacholine: Not
	+ hydrolyzes other esters as
	succinylcholine.
- <u>Inhibition</u> : more sensitive to	- <u>Inhibition</u> : more sensitive to
physostigmine	organophosphorus compounds

CHOLINERGIC RECEPTORS & ACh ACTIONS

• ACh mediates its effects by activating **muscarinic & nicotinic** cholinergic receptors present centrally & peripherally:

M ₁ receptors	M ₂ receptors	M ₃ receptors
(excitatory)	(inhibitory)	(excitatory)
coupled to $G_q \to \oplus PLC$	* coupled to $G_i \to \Theta$	coupled to $G_q \rightarrow \oplus$ PLC
\rightarrow \uparrow DAG & IP ₃ \rightarrow \uparrow Ca ⁺⁺	adenylate cyclase	\rightarrow \uparrow DAG& IP ₃ \rightarrow \uparrow Ca ⁺⁺
	* opening of K ⁺	
	channels	
• <u>CNS:</u>	• <u>Heart</u> :	• <u>SMF:</u>
a. Arousal, learning	a. \ominus SAN & AVN \rightarrow	- <u>Vascular endothelium</u> → <mark>N</mark> O
&short-term memory	↓ heart rate	release \rightarrow VD $\rightarrow \downarrow$ BP.
b. controls movement in	b. Atria $\rightarrow \downarrow$ contractility	- <u>Bronchi</u> → spasm
basal ganglia, in balance	-(† atrial conductivity).	<u>- Eye</u> \rightarrow - (\oplus constrictor
withDA.	 CNS→inhibitory 	pupillae)→miosis
• <u>Gastric</u> :	• Presynaptic neurons	- (⊕ ciliary muscle)
a. ↑ histamine release	\rightarrow inhibit ACh & NA	$ ightarrow$ accommodation, \downarrow IOP
$\rightarrow \uparrow$ HCL	release.	- <u>GIT,Ur</u> .→⊕ wall & relax
b. Relax lower		sphincters & Contractlower
esophageal sphincter		esophageal sphincter (LES)
(LES)		(with M_2)
		• Exocrine glands $\rightarrow \uparrow \text{All}$
		secretions (except milk, bile)

I. Muscarinic receptors: M_{1,2,3,4,5}

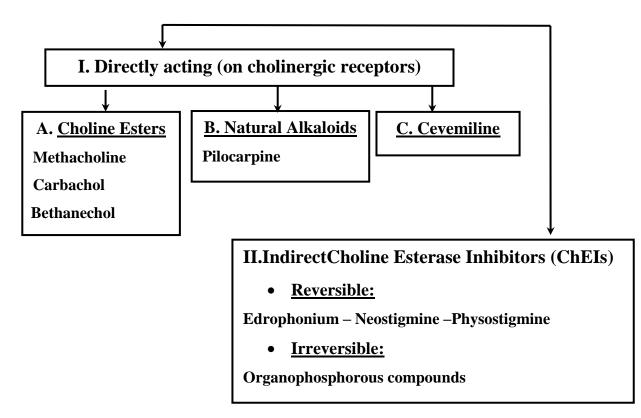
- **II. Nicotinic receptors (excitatory):** ligand-gated Na⁺ ion channels:
 - Neuronal (N_N): in all autonomic ganglia, presynaptic & in adrenal medulla $\rightarrow \uparrow$ catecholamines release.
 - Muscle (N_M): at NMJ \rightarrow skeletal muscle depolarization \rightarrow contraction.
 - CNS : ADH release.

Actions of ACh:

I. Muscarinic actions:

- 1. <u>CVS:</u>
 - **a.** Heart: $-\downarrow$ all HR $\rightarrow\downarrow$ COP & \downarrow AVN conduction
 - \uparrow atrial conductivity (due to \downarrow APD, \downarrow RP)
 - b. Blood vessels: VD (NO release)
 - c. Blood pressure: hypotension
- 2. <u>Eye:</u>
 - a. Miosis \rightarrow wide angle of filtration
 - b. Spasm of ciliary muscle \rightarrow Accommodation for NEAR vision
 - Open canal of Schlemm

- $\mathbf{c}.\downarrow\mathbf{IOP}$
- d. ↑ lacrimation
- **3.** <u>**Respiration:**</u>- Bronchospasm ↑ bronchial secretions
- 4. <u>GIT & Ur.Bladder:</u> Contract the wall Relax the sphincters
- 5. Exocrine glands: ↑ all secretions (watery secretions) [except milk, bile]


II. Nicotinic actions (ACh large dose):

- 1. Hypertension (Nn in autonomic ganglia & adrenal medulla)
- 2. Skeletal muscle twitches (Nm in neuromuscular junction)
 - The nicotinic actions of exogenous acetylcholine are "masked" by its muscarinic actions but can be demonstrated by an experiment performed on the blood pressure of an anaesthetized cat or dog → "Atropine Reversal" : atropine can reverse effect of all parasympathomimetics (with muscarinic & nicotinic actions) on A.B.P.

Uses of ACh: Not used clinically

** If Ach is given systemically: - Not absorbed orally → must be given by I.V.
-Rapidly hydrolysed→ very short duration
- Non specific → stimulates all (M) receptors

CLASSIFICATION OF CHOLINOMIMETICS

A.Choline Esters

- All are quaternary ammonium compounds
- More stable than Ach

	Methacholine	Carbachol	Bethanechol
	(Methyl ACh. \rightarrow weak	(Carbamoyl choline \rightarrow	(Methyl carbachol)
	nicotinic effect)	more lipid soluble)	
Oral absorption	Partial	Complete	Complete
Administration	Oral & SC	Oral & SC	Oral & SC
		Eye drops	Eye drops
Metabolism by	True only Not hydrolyzed by ChE		zed by ChE
Ch.E enzyme			
Muscarinic effect	Marked muscarinic effect		
Nicotinic effect	Weak	Marked	NO
Specificity	CVS	Eye, GIT, Ur.Bladder	

Uses of Choline esters:

Methacholine: it was used in:

- 1. <u>Paroxysmal atrial tachycardia (PAT)</u>
- 2. <u>P</u>eripheral vascular disease (PVD)
- 3. <u>Diagnosis</u> of <u>Paroxysmal Pheochromocytoma</u>,
- used nowadays in diagnosis of bronchial asthma (provocative test)

Carbachol & Bethanechol:

- 1. Glucoma (eye drops)
- 2. Non-obstructiveUrine retention e.g. postoperative
- 3. Non-obstructive Paralytic ileus e.g. postoperative
- 4. Neurogenic bladder
- 5. Congenital megacolon
- 6. Gastroesophageal reflux

Adverse effects and contraindications of choline esters:

Adverse effects	contraindications
1-Bradycardia.	 ► 1-Bradycardia.
2-Slow AV conduction.	 ► 2-AV block (heart block).
3-Hypotension.	 ► 3-Hypotension.
4-Bronchospasm + \uparrow secretions	 ◆ 4-Bronchial asthma.
5-↑ HCl secretion.	 ► 5-Peptic ulcer.
6- Choline esters passing B.B.B.	 ► 6-Carbachol and bethanechol are
worsen parkinsonism	contraindicated in parkinsonism
7. ↑ Secretions: lacrimat., saliva	7-Ischemic heart disease (hypotension $\rightarrow \downarrow$
8. ↑ Urination	coronary blood flow).
9. Nausea, Vomiting, Diarrhea, Colic	8-Thyrotoxicosis (increased atrial conduction \rightarrow atrial fibrillation).
7. Choline esters with nicotinic \rightarrow -	9-IV and IM injection \rightarrow severe bradycardia &
Lid twitches, frontal headache	hypotension (treated by atropine).
(with eye drops)	hypotension (treated by attopine).
- Skeletal muscle Fasciculations	

B.Natural alkaloid

• <u>**Pilocarpine</u>**: - 3^{ry} ammonium \rightarrow well absorbed orally, pass BBB</u>

- Not affected by Cholinesterase enzyme
- More selective on M_3

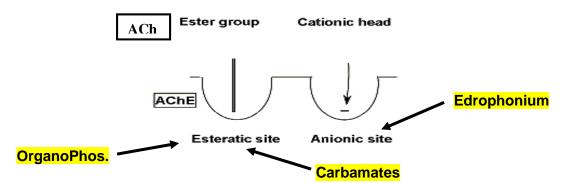
a. Eye:Miotic (the preferred miotic due to M_3 selectivity, rapid action and short acting) used for:

1. Glaucoma

- 2. After fundus examination \rightarrow counteracting mydriatics.
- 3. Iridocyclitis \rightarrow alternating with mydriatics prevent adhesions.
- b. Exocrine glands: \uparrow secretion \rightarrow in dryness of eye & mouth (xerostomia).
- c. Scalp blood vessels: $VD \rightarrow$ used as hair tonic.

C.Cevemiline

• More Selective on $M_3 \rightarrow$ used in dryness of eye & mouth.


Was used in

CHOLINE ESTERASE INHIBITORS (ChEIs)

ANTI-CHOLINESTRASES

Mechanism of Action

• ChEIs act indirectly by inhibiting choline esterase \rightarrow accumulation of ACh.

Reversible Ch.EIs

1. Simple Alcohols: Edrophonium

- Weak, **short-acting** (2-10 min) 4ry compound
- Binds <u>electrostatically</u> to the **anionic site** of enzyme
- Uses: IV, short acting used in
- 1. Diagnosis of myasthenia gravis \rightarrow muscle improvement
- 2. Differentiation between myasthenic & cholinergic crisis
- 2. <u>Carbamate esters</u> Physostigmine Neostigmine & its substitutes
 - medium-duration (3-4 hours)
 - The carbamyl group binds <u>covalently</u> to **esteratic site** of enzyme (active site) → carbamylated enzyme

	Physostigmine (Eserine)	Neostigmine(Prostigmine)
Nature:	Natural – 3ry amine	Synthetic – 4ry ammonium
Kinetics:	- Well absorbed orally	- Poor oral absorption
	- Pass BBB & conjunctiva	- NOT Pass BBB & conjunctiva
Dynamics:	- Mainly muscarinic& weak	- Muscarinic & Nicotiniceffects
	nicotinic effects	- Direct skeletal ms. stimulation
	- CNS stimulation	
Uses:	1. Miotic: eye dropsAs pilocarpine	1. Non-obstructive paralytic ileus
	but with lid twitches	&urine retention
	2. Atropine toxicity (correct	2. Myasthenia gravis(preceded by
	central & peripheral effects)	atropine to \ominus muscarinic side
		effects): diagnosis and treatment
		3. Antidote to neuromuscular
		blockers (Nicotinic + Direct)
		(preceded by atropine)
Toxicity:	city: 1. Exaggerated ACh. Like actions \rightarrow treated by Atropine	
	2. Convulsions \rightarrow treated by	NO convulsions \rightarrow NO need for
	Anticonvulsants	anticonvulsants

Neostigmine substitutes:

- Pyridostigmine & Ambenonium : in myasthenia gravis (long acting
 ↑ selectivity on skeletal muscles fewer visceral side effects).
- **Donepezil:** in Alzheimer disease $(3^{ry} \rightarrow crosses BBB long acting).$
- Demecarium: eye drops in Glucoma

Myathenia gravis

Autoimmune disease of skeletal muscles → antibodies → ↓ number of Nm
 → weakness of extraocular, neck, followed by other muscles)

• <u>Diagnosis:</u>

1. IV Edrophonium

- 2. IM Neostigmine 0.5 mg (preceded by 0.5 mg atropine)
- 3. Antibody titre

• <u>Treatment:</u>

1. Neostigmine, Pyridostigmine, Ambenonium

- 2. Ephedrine & Caffeine are adjuvants
- 3. Immunosuppressants: Corticosteroids & Antimetabolits e.g. Azathioprine
- 4. Thymectomy (thymus gland \rightarrow antibodies)
- 5. Plasmaphoresis (purify plasma from antibodies)

• Drugs contraindicated in Myasthenia gravis:

- 1. Skeletal muscle relaxants
- 2. Aminoglycosides: curare-like effect
- 3. Beta-blockers (↓ blood flow to skeletal ms.)
- 4. Quinidine (sk.ms. relaxant effect)

Myasthenic crisis	Cholinergic crisis
- due to ineffective or insufficient	- due to excessive treatment $\rightarrow \uparrow ACh \rightarrow$
treatment $\rightarrow \downarrow$ ACh \rightarrow sever muscle	maintained depolarization \rightarrow muscle
weakness	exhaustion and weakness
- <u>Edrophonium</u> →mucleimprovement	- <u>Edrophonium</u> →more mucle weakness

Irreversible Ch.EIs

Organophosphorous compounds

- Very long duration
- The phosphate group binds <u>covalently</u> to the esteratic site of the enzyme.
- The covalent phosphorous enzyme bond is extremely stable and hydrolyzes in water at a very slow rate (hundreds of hours)→ reactivation time of phosphorylated enzyme > the regeneration time of the enzyme→ irreversible inhibition
- Ageing occurs in the phosphorylated enzyme bond within 2 min-12hrs → strengthening of covalent bond →recovery of enzyme cannot occur. Thus, choline esterase regenerators in organophosphate toxicity should be given early before ageing occurs.

Members & uses:

- 1-Malathion& parathion: Insecticides.
- 2- Sarin: Nerve gas
- 3- Echothiophate: Eye drops

a. Antagonizes atropine after fundus exam. b. Glaucoma

4- Pyrantel pamoate: Paralysis of round worms

Toxicity of Organophosphorus Compounds

- Organophosphorus compounds are highly lipid-soluble & are well absorbed from all sites & cross BBB (except Echothiophate has $4^{ry} N^+ \rightarrow \downarrow$ systemic toxicity).
- Poisoning occurs due to <u>suicide</u> or <u>accidental</u> exposure to drugs during spraying insecticides or <u>Nerve gases during war</u>.

I- Acute toxicity

- Excessive muscarinic effects:
 - Miosis, Bronchospasm, Colic
 - Lacrimation, Sweating, Salivation
 - Vomiting, diarrhea, Urination
 - Bradycardia, Hypotension

- Nicotinic effects: Skeletal muscle twitches followed by paralysis.
- **CNS effects**: (stimulation): Excitation, Anxiety, convulsions followed by(depression): coma & respiratory depression.

Death is due to respiratory failure:

- Respiratory center depression.
- Paralysis of respiratory muscles due to persistent depolarization block.
- Excessive bronchial secretions with <u>acute pulmonary oedema</u>.

Treatment of acute Organophosphorus Toxicity

1. Maintain vital signs:

Aspirate bronchial secretions, endotracheal intubation & artificial respiration.

2. Decontamination (to prevent further absorption):

Remove contaminated clothes - wash skin (Na hypochlorite) - gastric lavage.

3. Atropine (large doses) for CNS & muscarinic effects:

2 -5 mg/ 5 min→ <mark>Full Atropinization</mark>

Mydriasis, Dry mouth, Tachycardia >80/min, Systolic pr.>80 mmHg,

bronchial secretions & wheezes stop.

4. Choline esterase reactivators (oximes): PAM (pralidoxime)

React with phosphorous \rightarrow Harmless compounds = Chelation \rightarrow Regenerates choline esterase (IV infusion 1-2 g over 15-30 minas soon as possible before enzyme ageing).

5. Diazepam: for convulsions.

<u>**II-** Chronic Toxicity</u>: \rightarrow delayed neuropathy.

ANTIMUSCARINIC AGENTS

Atropine & Atropine Substitutes

Atropine

It is a 3^{ry} ammonium ester of tropic acid → well absorbed from GIT if given orally or from conjunctiva after ocular instillation & can cross BBB.

Mechanism of Action

• Atropine causes **reversible competitive blockade** of the actions of ACh at **muscarinic receptors** (nonselective for muscarinic receptors).

Pharmacological Actions

- 1. CNS
 - Stimulates cardioinhibitory center (vagal nucleus) \rightarrow initial bradycardia
 - Respiratory center stimulation (blocks M₂ receptors) .
 - Antiemetic (blocks M₁ receptors in vestibular pathway).
 - Antiparkinsonian (blocks M₁ receptors in basal ganglia).
 - Stimulation of vasomotor center
 - High doses \rightarrow cortical excitation followed by depression
- **2. Eye** (effects persist for > 72 hrs) \downarrow Aquous out flow \rightarrow
 - Passive Mydriasis (paralysis of constrictor pupillae).
 ↑IOP → acute glaucoma
 in narrow anterior
 - Cycloplegia (ciliary muscle paralysis
 & loss of accommodation for near vision).
 in narrow anterior
 chamber

3. Secretions

- \downarrow Salivation (\rightarrow dry mouth), \downarrow lacrimation (\rightarrow dry sandy eyes).
- \downarrow Sweating (\rightarrow \uparrow body temperature) & \downarrow bronchial secretions.
- Gastric secretion is least affected.(so, atropine is less efficacious than H2 blockers in reducing HCL)

4. Smooth Muscle

- <u>GIT& Urinary:</u> relaxes wall & contracts sphincters \rightarrow constipation, urine retention & antispasmodic.
- Bronchi: Bronchodilation.
- **5. CVS**
 - Tachycardia (mainly) & \uparrow AVN conduction (blocks M₂ receptors).
 - Initial bradycardia on IM/Sc injection: initial central vagal stimulation & presynaptic M_2 block $\rightarrow \uparrow$ ACh release.
 - Tachycardia+ VMC stimulation $\rightarrow \uparrow BP$
 - **Vasodilation** (histamine release). $\rightarrow \downarrow BP$

Clinical Uses Atropine

- 1. **Preanesthetic medication** \rightarrow inhibits secretions dilates bronchi antiemetic inhibits bradycardia stimulates respiration.
- 2. Hyperactive carotid sinus heart block bradycardia (in infarction or digitalis toxicity).
- 3. Antiemetic in motion sickness
- 4. Organophosphate poisoning.
- 5. Cycloplegic in children (atropine is preferred to atropine substitutes in children as their ciliary muscle is strong & atropine substitutes are weaker cycloplegics than atropine).
- 6. Travelers diarrhea (+ Diphenoxylate) to \uparrow constipating effect & \downarrow abuse.

Adverse effects of atropine & contraindications (CI)

- 1.Confusion, restlessness \rightarrow hallucinations, delirium & mania
- 2. Dry mouth and skin
- 3. Hyperthermia (complete skin dryness)
- 4. Vasodilation & flushing 5. Tachycardia.
- 6. Blurred vision photophobia
- 7. Acute glaucoma in patients with narrow anterior chamber (CI: glaucoma).
- 8. Urine retention in old patients with enlarged prostate (CI: enlarged prostate).
- 9. Constipation.

Acute atropine toxicity:

1. Dry as bone	2. Red as beet root
3. Hot as hare	4. Blind as bat
5. Mad as we	et hen
6. Bladder loses its tone	7. Heart runs alone

Peripheral actions:

- 1) \downarrow Sweat $\rightarrow \uparrow$ temperature \rightarrow Dry & Hot skin
- 2) V.D. \rightarrow Flushed skin
- 4) Eye: Dilated & Fixed Pupil, blurring of vision and diplopia.
- 5) Constipation & Urine retention
- 6) \uparrow Pulse, \uparrow B.P. & \uparrow Resp.

CNS:

Cortical excitation (restlessness, convulsions, hallucinations and delirium) followed by depression (respiratory depression and coma)

Treatment of atropine poisoning

1- Symptomatic: VERY IMPORTANT

- <u>C</u>old foment \rightarrow for atropine fever
- <u>Catheter</u> \rightarrow for urine retention
- <u>Sedative & tranquillizers</u> e.g. diazepam \rightarrow in stimulation stage
- <u>Stimulants</u> e.g. caffeine \rightarrow in depression stage

2- Gastric lavage

3- Dialysis $\rightarrow \uparrow$ excretion

4-Physiological Antidote

- A-Pilocarpine (peripheral action only)
- B-**P**hysostigmine \rightarrow peripheral action + cross BBB \rightarrow central action.

Atropine Substitutes

I. Natural atropine substitutes

Scopolamine (Hyoscine)

	Atropine	Scopolamine (Hyoscine)
CNS effect	Excitatory	Depressants \rightarrow amnesia, fatigue,
		drowsiness, twilight sleep
		High dose \rightarrow excitation
Antimuscrinic	More on heart, bronchi and	More on eye and secretions
effect	intestine	
Antimotion	++	+++
sickness		
Duration	Longer	Shorter

<u>Uses</u>

- Mydriatic (briefer than atropine).
- Antiemetic in motion sickness & Minieres disease (more effective > atropine).
- Preanesthesia medication (no initial bradycardia).
- **II. Synthetic atropine substitutes** (more selective \rightarrow fewer side effects)
 - **1. Mydriatic cycloplegics** (cyclopentolate -tropicamide homatropine):

<u>Used in</u>

- Iridocyclitis; alternating with miotics to prevent synechia.
- To measure refractive errors
- For fundus examination.

<u>Advantages</u> : shorter acting than atropine \rightarrow action is easier to reverse

 \rightarrow preferred to atropine (except in children).

- 2. Antisecretory& antispasmodics:
 - Hyoscine butyl-bromide: antispasmodic in renal, biliary & intestinal colic & in irritable bowel syndrome.
 - Dicyclomine, Pirenzepine; selective M₁ blocker → antispasmodic,
 Peptic ulcer.

3. Urinary atropine substitutes:

• Oxybutynin: used in nocturnal enuresis & in urine incontinence.

4. Anti-parkinsonian (benztropine - benzhexol): Used in

- <u>Drug induced</u> parkinsonism
- Adjuvants in Parkinsonism presenting with tremors & to control sialorrhea.

5. Bronchial atropine substitutes

<u>**Ipratropium**</u> (non selective M_2 / M_3 blocker)

- **Inhaled** bronchodilator (M₃ blocker)
- Advantages over atropine:
 - 1- Poor CNS penetration
 - 2- No systemic atropine side effects
 - 3- No \downarrow in mucociliary clearance of bronchial epithelium.

• Differences between ipratropium & inhaled β_2 agonist

- 1- Gradual onset & late peak (40-60 min)
- 2- Suitable for regular prophylactic use > rapid symptomatic relief

• Used in **asthma & COPD** (**more effective in COPD** > **asthma** because the parasympathetic tone is the major factor in COPD).

- **Tolerance** develops due to block of presynaptic M_2 receptor $\rightarrow \uparrow$ ACh.
- A/E (transient): dryness of mouth, tracheal irritation, cough, bad taste

<u>**Tiotropium**</u> (selective M₃ blocker)

- **Longer acting** than ipratropium → used once/d;
- For maintenance in **COPD**.
- Does not block M_2 receptors \rightarrow **no tolerance**.

Drugs with Atropine-Like Action

- Antiarrhythmics: quinidine procainamide.
- Antihistamines (1st generation).
- Tricyclic antidepressants antipsychotics– pethidine.
- Atropine substitutes.

GANGLIONIC STIMULANTS

Nicotine (small dose)

Mechanism of action:

- 1. Small dose \rightarrow ganglionic stimulants (large dose \rightarrow blocker)
- 2. ↑Release of catecholamine from adrenal medulla
- 3. Act on Nn in CNS

Actions: depend on predominant tone

- **CVS:** Tachycardia hypertension VC of all vessels (except skeletal muscle and coronary)
- **Blood:** ↑ Fatty acid concentration & platelet aggregation
- **GIT:** ↑ motility
- **CNS:** \uparrow CTZ, ADH, CNS stimulation
- Enzyme inducer

Effects of chronic tobacco smoking:

- GIT: Salivation, inhibition of hunger pain
- CVS: Extrasystole, Atherosclerosis, Angina pectoris
- **Respiratory:** Cancer lung and larynx nasopharyngeal and bronchial irritation
- **Eye:** Spasm of retinal vessels
- **Pregnancy:** \uparrow incidence of abortion and neonatal mortality

Drugs used in smoking cessation:

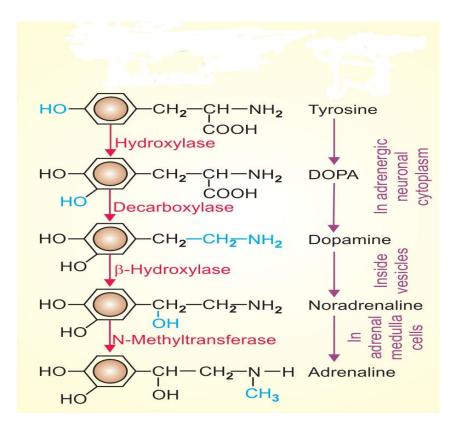
- 1. Nicotine replacement therapy: gum, inhaler, patch
- 2. Bupropion
- 3. Vareniciline: direct Nn partial agonist

- reduce craving for tobacco

GANGLIONIC BLOCKERS

Only used is **Trimetaphan** \rightarrow ultrashort acting ganglion blocker & direct VD

<u>Uses:</u> IV in - Hypertensive emergency - controlled hypotension in surgery

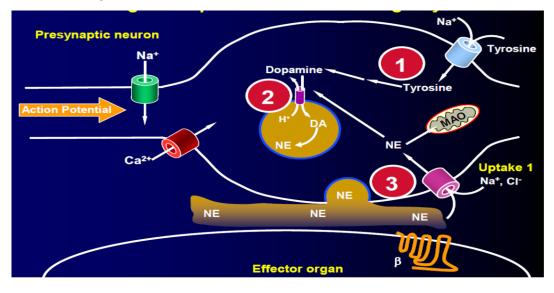

ADRENERGIC PHARMACOLOGY

- The sympathetic system is an important regulator of activities of the heart & peripheral vasculature especially in response to stress.
- Adrenergic neurotransmitters are responsible for transmission at all postganglionic sympathetic neurons, except those of sweat glands.

Adrenergic Neurotransmitters (endogenous catecholamines)

- **1. Norepinephrine (NE)**: The transmitter of postganglionic sympathetic fibers & of certain tracts in the CNS.
- **2. Epinephrine**: major hormone of adrenal medulla. The adrenal medulla receives preganglionic cholinergic neurons & releases epinephrine.
- **3. Dopamine (DA)**: Central transmitter in the extrapyramidal, mesolimbic & tuberoinfundibular pathways & in the CTZ. It is also a peripheral transmitter.

Synthesis of CAs (Catecholamines):


- Tyrosine hydroxylase is a specific and the rate limiting enzyme.
 - Its inhibition by *a-methyl-p-tyrosine* → depletion of CAs → can be used in pheochromocytoma before surgery & in inoperable cases.
- NE is synthesized in the nerve cell & is stored in synaptic vesicles at the terminal end of the adrenergic neurons
- Synthesis of Adrenaline occurs only in the adrenal medullary cells. It requires high concentration of glucocorticoids for induction of the methylating enzyme.

Storage of CAs

- NA is stored in synaptic vesicles or 'granules' within the adrenergic nerve terminal.
- The vesicular membrane actively takes up DA from the cytoplasm and the final step of synthesis of NA takes place inside the vesicle which contains dopamine β- hydroxylase.
- NA is then stored as a complex with ATP & a protein chromogranin

Release of CAs

- The nerve impulse \rightarrow release of CA by exocytosis
- All the vesicular contents (NA or Adr, ATP, dopamine β hydroxylase, chromogranin) are released

Drugs Affecting NE Release

NE release is controlled centrally by nucleus tractus solitarus (NTS)

& peripheral by presynaptic neurones

Drugs ↑ release

- Low conc. of NE → activates presynaptic β₂ receptors.
- Tyramine
- Amphetamine
- Ephedrine.
- Nicotine (presynaptic Nn)

<u>Drugs ↓ release</u>

- High conc. of NE → activates
 presynaptic α₂ receptors→ -ve feedback.
- ACh (presynaptic M₂).
- Clonidine. Central α₂ agonists

Fate of catecholamines

- I. Uptake
 - A. Uptake 1 (amine pump): actively transports NE from synaptic cleft into neuronal cytoplasm to be stored in granules or metabolized by MAO enzyme (the main fate of released NE).
 - Blocked by: tricyclic antidepressants (TCA) cocaine.
 - B. Vesicular: from neuronal cytoplasm to storage vesicles for re-use.
 - Blocked by: Reserpine (depletes stores).
 - C. Uptake II: to target organs for metabolism.
 - Blocked by: glucocorticoids.

II. Enzymatic Degradation of catecholamines

- The monoamines, epinephrine, NE & DA are catecholamines (contain catechol nucleus (a benzene ring with 2 OH groups)).
- They are degraded <u>mainly</u> by oxidative deamination by monoamine oxidase (MAO) & to a lesser extent by methylation by catechol-o-methyl transferase (<u>COMT</u>).
- The end product; vanilylmandelic acid (VMA) is excreted in urine → ↑
 in pheochromocytoma (used in diagnosis).

Classification of Adrenergic Receptors:

I-ALPHA (α):

α ₁	α2
Coupled to Gq $\rightarrow \oplus$ PLC $\rightarrow \uparrow$ IP3&	Coupled to Gi $\rightarrow \ominus$ adenylate cyclase
DAG \rightarrow \uparrow Ca2+ & \oplus PKC	$\mathbf{i} cAMP \mathbf{i} \ominus PKA$
1. Vasoconstriction	1. \downarrow Central sympathetic outflow $\rightarrow \downarrow$ BP.
2. Relaxation of walls & Contraction of	2. ↓ Lipolysis.
sphincters of GIT & urinary tracts.	3. ↓ Insulin secretion (predominant).
3. Contraction of prostate & vas deferens.	4. ↓ Renin release.
4. Active mydriasis.	5. ↑ Platelet aggregation.
5. Liver glycogenolysis & K+ release.	

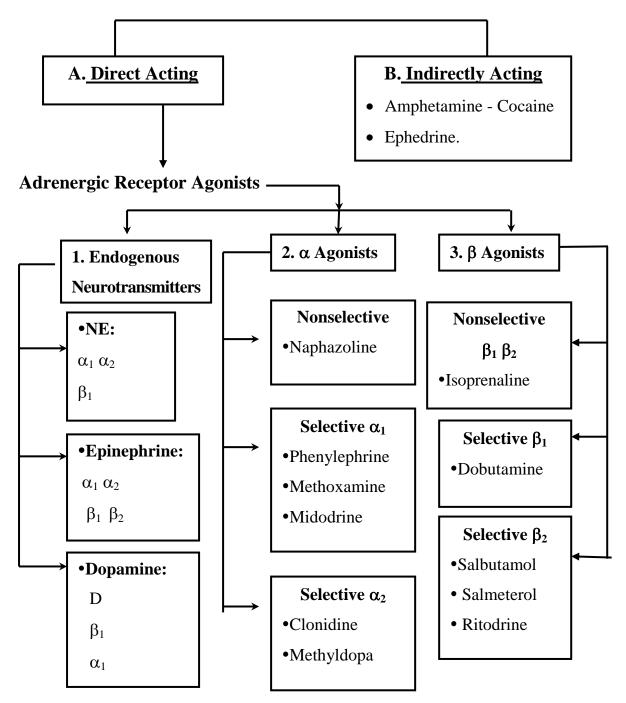
II- BETA (β):

β1	β ₂	
Coupled to Gs protein $\rightarrow \oplus$ adenylate cyclase $\rightarrow \uparrow cAMP \rightarrow \oplus PKA$		
1. Cardiac stimulation.	1. Bronchodilation & mast cell stabilization.	
2. Lipolysis → \uparrow plasma FFA	2. Vasodilation of skeletal & coronary blood	
(β1 and β3).	vessels.	
3. ↑Renin secretion.	3. Uterine and intestinal relaxation.	
	4. Liver & muscle glycogenolysis & k+	
	<mark>uptake.</mark>	
	5. Stimulate insulin release (weak effect).	
	6. Skeletal muscle tremors	

<u>Presynaptic \alpha_2:</u> 1. Inhibit NE release from sympathetic nerves.

2. \downarrow Ach release in the heart & intestine.

<u>**Postsynaptic** β_3 :</u> \uparrow Lipolysis \rightarrow \uparrow plasma FFA


III. DOPAMINE RECEPTORS

- **D**₁: vasodilation of renal, coronary, cerebral & mesenteric blood vessels.
- **D**₂: <u>**Postsynaptic**</u>: central in the extrapyramidal, tuberoinfundibular, & mesolimbic pathways & in the CTZ.

<u>Presynaptic</u>: \downarrow DA & NE release from nerve endings.

Sympathomimetic Drugs

Classification According to Mechanism of Action

4. DA agonists: Dopexamine $(\mathbf{D}_1 \mathbf{D}_2 \mathbf{B}_2)$ – fenoldopam (\mathbf{D}_1) – bromocriptine (\mathbf{D}_2) .

<u>N.B</u>.:

• Selective α_2 - agonists are sympatholytics as they \downarrow NE release.

1. Epinephrine

Pharmacological actions

I. Cardiovascular System

- A. Heart (β_1)
 - *↑*Force of contraction (positive inotropic).
 - ↑ Heart rate (positive chronotropic).
 - ↑ Conduction velocity (positive dromotropic) in atria, A-V node, conductive tissues & ventricles.
 - \uparrow Automaticity \rightarrow Arrhythmias.

B. Blood vessels

- VC of arterioles of skin, mucosa, splanchnic & renal vessels (α_1).
- VC of veins (α_1) .
- Vasodilatation of skeletal & coronary vessels (β_2 effect).

C. Effects on Blood Pressure

Large dose: \uparrow systolic & diastolic BP $\rightarrow \uparrow$ mean BP through:

- Vasoconstriction of arterioles and veins (α₁).
- Positive chronotropic & inotropic actions (β₁) (overcome reflex bradycardia).

Small dose: \uparrow systolic BP but \downarrow diastolic BP due to VD of skeletal blood vessels (β_2) with no change in mean BP \rightarrow no reflex bradycardia.

Epinephrine Reversal

The hypotensive effect of epinephrine (β₂-mediated VD of skeletal blood vessels) is masked by its hypertensive effect (α₁). After α-blockade, the β₂-mediated hypotensive effect is unmasked.

II. Respiratory System:

- Bronchodilatation (β_2 action).
- Decongestion of BV of mucous membrane of upper respiratory tract (α_1).

III. Eye

- Contraction of dilator pupillae $(\alpha_1) \rightarrow \text{Active}$ mydriasis without cycloplegia.
- ↓ IOP by decreasing aqueous humor formation.

IV. Effect on other smooth muscles

- Relaxation of GIT wall (β , α , α_2).
- Contraction of sphincters of GIT & urinary tracts (α_1) .
- Inhibition of uterine tone & contractions in last months of pregnancy (β_2).

V. Metabolic actions

- Hepatic & skeletal muscle glycogenolysis $\rightarrow \beta_2$ (mainly) & α_1 .
- Insulin release \rightarrow inhibited by α_2 (dominant).
- Lipolysis ($\beta_1 \& \beta_3$).
- Renin release (β₁)
- \downarrow serum K⁺ (by renin release; $\beta_1 \& \uparrow$ hepatic uptake; β_2)

VI. CNS: mild stimulation \rightarrow Anxiety.

VII. Skeletal muscle: tremors $\rightarrow \beta_2$ & central.

Therapeutic Uses

- 1. <u>A</u>naphylactic shock (reverses bronchospasm & hypotension \rightarrow life saving).
- 2. <u>A</u>sthma (β_2 agonists are preferred).
- 3. Cardiac <u>A</u>rrest.
- 4. <u>A</u>rrests bleeding (topical hemostatic \rightarrow VC, e.g. in epistaxis).
- 5. $\underline{\mathbf{A}}$ dded to local $\underline{\mathbf{A}}$ nesthetics to prolong their action.
- 6. Open <u>A</u>ngle glaucoma (\downarrow IOP).

Adverse effects:

- 1. <u>CNS:</u> Anxiety, restlessness
- 2. <u>CVS:</u> Hypertension \rightarrow cerebral hemorrhage

Tachycardia, Arrhythmia & Angina

- 3. Eye: irritation, blurred vision
- 4. <u>Skeletal muscle</u> tremors
- 5. Gangrene if injected around <u>finger or toe</u>

Contraindications:

- 1. Around finger, toe & circumcision
- 2. Hypertension, cerebral hemorrhage
- 3. Patients on beta-blocker therapy (unopposed alpha \rightarrow sever HTN)
- 4. Ischemic heart disease
- 5. Arrhythmia, with Digitalis & General anesthesia
- 6. Thyrotoxicosis

Preparations and Dosage

- SC or IM injection of 1:1,000 in mild anaphylactic shock.
- IV in severe anaphylactic shock or cardiac arrest; 1:10,000.
- Intracardiac in cardiac arrest.
- Epinephrine inhalation 1:100 in asthma.
- Topical: 1:100 in bleeding states 1% solution for ophthalmic use.

2. Norepinephrine (Noradrenaline)

- Acts on $\alpha \& \beta_1$ receptors (minimal effect on $\beta 2$ receptors).
- <u> $\alpha \text{ effect} \rightarrow \text{marked vasoconstriction} \rightarrow \uparrow \uparrow BP.$ </u>
- $\underline{\beta_1 \text{ effect}} \rightarrow \text{positive inotropic } \& \text{ chronotropic effect.}$
- Marked ↑↑ BP → reflex bradycardia which overcomes its direct positive chronotropic effect

• Used in shock:

Septic - cardiogenic (if BP < 70mmHg) - after resection of pheochromocytoma.

3. Dopamine (immediate precursor of NE)

- At low doses → activates <u>D</u>₁ receptors in several vascular beds; renal vasodilation →↑ renal blood flow.
- At moderate doses \rightarrow activates cardiac <u> β_1 </u> receptors \rightarrow positive inotropic & chronotropic effects \rightarrow arrhythmia.
- At high doses → activates <u>α</u>₁ receptors → vasoconstriction, including the renal vascular bed & ↑ BP.

Used in:

- Acute HF & cardiogenic shock <u>after myocardial infarction or</u> <u>surgery</u> especially if there is renal impairment
- Chronic refractory heart failure.

B. α- agonists

Selective α₁- agonists

1. Phenylephrine

• Not a CA \rightarrow Not inactivated by COMT \rightarrow Longer acting than CA.

<u>Uses</u>: *Local*: **a.** Mydriatic for fundus examination.

b. Eye & nasal **decongestant**.

Systemic: a. Hypotension.

 b. Paroxysmal supraventricular tachycardia (PSVT) associated with marked hypotension (↑ BP→ reflex vagal stimulation).

2. Methoxamine

• <u>Uses</u>: hypotensive states (parenteral).

3. Midodrine

- A **prodrug** that is hydrolyzed to **desglymidodrine** (α_1 agonist).
- <u>Uses</u>: postural hypotension (mainly).

Adverse effects of α₁- agonists

- 1. Hypertension & bradycardia.
- 2. Rebound nasal congestion & atrophic rhinitis (with local application)

C. β- agonists

<u>I-Non-selective β- agonists:</u>

Isoprenaline:

- β₁ effect → +ve chronotropic (↑HR) & inotropic (↑contractility) → marked ↑ in cardiac output.
- β_2 effect \rightarrow vasodilation $\rightarrow \downarrow$ diastolic BP \rightarrow reflex tachycardia.
- Marked $\uparrow\uparrow$ in HR \rightarrow anginal attack & sudden death.
- **<u>Used in</u>**: **Bradycardia** 2^{ry} to heart block.

<u>II-Selective β1- agonist</u>

Dobutamine

Used in:

- Acute HF & cardiogenic shock especially in normotensives (no α effect) with preserved renal function (no renal VD effect).
- Chronic refractory heart failure.

Adverse effects

- Palpitation.
- Anginal pain.
- Arrhythmia.

Dopamine	Dobutamine
Natural catecholamine.	• Synthetic catecholamine.
 D₁-agonist (at low dose) → VD of renal blood vessels. Headache, nausea, vomiting. 	• No D ₁ agonist effect.
 β₁-agonist (at moderate dose): Cardiac stimulation (+ve inotropic & chronotropic) Anginal pain and arrhythmia. α₁-agonist (At high dose): Vasoconstriction 	 β₁-agonist: Cardiac stimulation: inotropic > chronotropic. Less arrhythmogenic. No α₁-agonist effect.
 Hypertension, gangrene <u>Used in</u> Acute HF & cardiogenic shock especially if there is hypotension or renal impairment . Chronic refractory heart failure. 	 <u>Used in</u> Acute HF & cardiogenic shock especially in normotensives with preserved renal function . Chronic refractory heart failure.

Comparison between Dopamine and Dobutamine

<u>III-Selective β₂ agonists</u>

Advantages over nonselective β agonists

- 1. No cardiac complications in regular doses.
- 2. Longer acting (not metabolized by MAO or COMT).
- 3. May be given by many routes (oral, inhalation, parenteral).

Therapeutic uses

- 1. Bronchial asthma (salbutamol salmeterol).
- 2. Prevent premature labor & threatened abortion (terbutaline & ritodrine).

Adverse effects (less with inhalation therapy):

- 1. Anxiety, restlessness and headache.
- 2. <u>Tremors of skeletal muscle</u>.
- 3. <u>T</u>achycardia (at high concentration they stimulate β_1 receptors).
- 4. <u>**T**</u>olerance **on long term systemic** use (β receptor downregulation).
- 5. Hypokalemia and muscle cramps.
- 6. <u>Hypoxemia</u>: (β_2 effect \rightarrow VD > bronchodilation $\rightarrow \downarrow$ blood oxygenation).
- 7. <u>Hyperglycemia & increased free fatty acids</u>.

D. D-agonists

- **1. Dopamine** (see before)
- 2. Dopexamine
 - A dopamine analogue \rightarrow activates $D_1 \& D_2 + \beta_2$ receptors.
 - Powerful splanchnic vasodilator $\rightarrow \downarrow$ afterload & improves blood flow to vital organs, including the kidney.
 - Use: in Shock following myocardial infarction, trauma, open heart surgery in those with low cardiac output & peripheral vasoconstriction.

3. Fenoldopam

- D_1 receptor agonist \rightarrow peripheral V.D. in some vascular beds.
- Used: mainly IV for the treatment of severe hypertension.

II. INDIRECTLY ACTING SYMPATHOMIMETICS

1. Amphetamine

Mechanism of actions: release NE centrally & peripherally \rightarrow

- A. CNS:
 - CNS stimulation alertness \downarrow fatigue marked mood elevation
 - Appetite Suppression
- **B. CVS**: \uparrow arterial blood pressure \rightarrow reflex bradycardia.

Therapeutic uses (CNS):

- 1-Attention deficit hyperactivity disorder (ADHD) in children
- 2- Narcolepsy.
- 3. **Obesity** (largely replaced by newer agents e.g. **phenteramine** sibutramine)

Adverse effects:

- 1. CNS:
 - **Psychological dependence** schizophrenia-like syndrome.
 - Anorexia & weight loss
 - Insomnia & tremors \rightarrow depression & fatigue (depletion of CA store).
 - Convulsion \rightarrow coma & cerebral hemorrhage (severe toxicity)
- 2. CVS: palpitation, arrhythmia, anginal pain and hypertension

2. Ephedrine & pseudoephedrine

- Ephedrine acts **directly** (<u>as epinephrine</u>) & **indirectly** (↑ CA release).
- Less potent & less CNS effect than amphetamine.

Uses

- 1. Nasal decongestant (ephedrine & pseudoephedrine).
- 2. Topical hemostatic in epistaxis (ephedrine)
- 3. Spinal shock (IV) (ephedrine)
- 4. Bronchial asthma (ephedrine)

Adverse effects

- 1. Minimal CNS stimulation \rightarrow insomnia & anxiety.
- **2.** Minimal CVS stimulation \rightarrow palpitation, arrhythmia.
- 3. Urinary retention.
- **3.** Cocaine (local anesthetic):
 - Inhibits CA reuptake → peripheral sympathomimetic action.
 - Readily enters CNS → amphetamine-like effect (more intense, more addictive, shorter acting).

Contraindications of sympathomimetic drugs

- 1. Patients on β blockers (unopposed α -actions \rightarrow severe hypertension).
- 2. Hypertensive patients or those with ischemic heart disease (specially decongestants in OTC cold remedies).
- 3. Adding epinephrine to local anesthetics in cardiac patients & around finger and toes.
- 4. Diabetes.
- 5. Thyrotoxicosis.

Sympatholytic Drugs

I-Centrally-Acting Sympatholytics

1. Methyl dopa

Mechanism:

Prodrug → metabolized in the brain to α-methyl NE which stimulates central α₂ receptors in brain stem (NTS) → ↓ central sympathetic outflow.

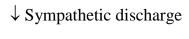
Uses: Antihypertensive especially in pregnancy.

Adverse effects: (limit its use)

1.Sympatholytic: Sedation - Sexual dysfunction - <u>D</u>ry mouth - <u>D</u>iarrhea
 Peptic ulcer aggravation - Bradycardia.

2. Salt and water retention → Tolerance & Weight gain.

- 3. Hepatitis, hemolytic anemia, systemic lupus (immune based).
- 4. Depression (\downarrow DA, \downarrow 5HT synthesis).
- 5. Parkinsonism & Hyperprolactinemia (\ DA).


2. Clonidine

Mechanism of Action

- 1. Activates central α_2 and Imidazoline receptors $\rightarrow \downarrow$ central sympathetic outflow $\rightarrow \downarrow$ BP.
- 2. Acts on **peripheral presynaptic** α_2 receptors $\rightarrow \downarrow$ NE release.
- 3. Stimulates **peripheral postsynaptic** α_2 receptors $\rightarrow \downarrow$ renin & aldosterone.

Uses

- 1. Preanesthetic medication (sedative & analgesic).
- 2. <u>M</u>orphine withdrawal
- 3. <u>M</u>enopausal hot flushes.

- 4. <u>M</u>igraine prophylaxis
- 5. Hypertensive urgencies.

Adverse effects

1.Sympatholytic: Sedation - Sexual dysfunction - <u>D</u>ry mouth - <u>D</u>iarrhea Peptic ulcer aggravation – Bradycardia.

- 2. Salt and water retention \rightarrow Tolerance & Weight gain.
- 3. **Rebound hypertension**: treated by $\alpha \& \beta$ blockers e.g. labetalol.

II- Alpha Adrenoceptor Antagonists

Classification

Non-selective		Selective	
Irreversible <u>Long</u> <u>acting</u>	Reversible <u>Short acting</u>	Alpha ₁ Selective	Alpha ₂ Selective
Phenoxybenzamine	Phentolamine	Prazosin	Yohimbine
$(\alpha_1 > \alpha_2)$	$(\alpha_1 = \alpha_{2})$	Doxazosin	
	+	Terazosin	
	Direct VD	Tamsulosin	

Other α Blockers: labetalol- carvedilol.

Selective *α*₁ blockers

I. Cardiovascular actions

1. Mixed vasodilators:

- a. Arteriodilators $\rightarrow \downarrow$ peripheral resistance $\rightarrow \downarrow$ blood pressure.
- b. Venodilators $\rightarrow \downarrow$ venous return \rightarrow postural hypotension.
- **2. Tachycardia**: more with nonselective agents (they block presynaptic α_2 receptors, $\rightarrow \uparrow$ NE release \rightarrow stimulate cardiac β_1 receptors).
- **3. Fluid retention on chronic use** (compensatory \uparrow in blood volume).

II. Other actions

- Block α receptor at base of **bladder & prostate** $\rightarrow \downarrow$ resistance to urine flow \rightarrow useful in benign prostatic hyperplasia (BPH).
- Relaxation of **vas deferens** \rightarrow inhibition of ejaculation.
- Miosis Nasal congestion (stuffiness).

Therapeutic uses of α blockers

- 1. BPH.
- 2. Essential hypertension. (with hyperlipidemia)
- 3. Hypertensive emergencies
 - In most hypertensive emergencies (labetalol)
 - Clonidine rebound & pheochromocytoma (phentolamine+βB /or/ labetalol).
- 4. Extravasation of α -agonists (prevent VC & dermal necrosis).
- 5. **Raynaud's disease**: Ca²⁺ channel blockers are preferred.
- 6. **Pheochromocytoma**: medical treatment: **before surgery or if inoperable** (phenoxybenzamine is preferred; irreversible blocker).

Adverse Effects of ablockers

- **1.** $\mathbf{1}^{st}$ dose postural hypotension: \downarrow by giving small dose (1 mg) at bed time.
- 2. Tachycardia (marked with non-selective agents).
- **3.** Impaired ejaculation and sexual dysfunction.
- 4. Nasal congestion, flushing, headache.

<u>Tamsulosin</u>

• High affinity for α_{1A} receptors (responsible for prostate smooth muscle contraction) than α_{1B} receptors (responsible for VC) $\rightarrow \uparrow$ efficacy in benign prostatic hyperplasia with less effect on blood vessels than other selective α_1 blockers \rightarrow minimal change in BP.

Selective a2 blockers

• **Yohimbine**: used as an **aphrodisiac** $\rightarrow \uparrow NE$ release \rightarrow stimulates ejaculation

<u>III-Beta Adrenoceptor Blockers</u> (βBs)

- β Bs antagonize the effects of catecholamines at β -adrenoceptors.
- Different βBs are distinguished by:
 - 1. Relative **selectivity** for $\beta_1 \& \beta_2$ receptors
 - 2. Differences in **lipid solubility**
 - 3. Intrinsic sympathomimetic activity (ISA),
 - 4. Membrane-stabilizing activity (MSA)
 - 5. Vasodilator effects.

	Lipophilic	Balanced	Hydrophilic	Advantages
Non-	• P ropranolol	• Pindolol	Nadolol	
selective	(<mark>MSA</mark>)	(<mark>ISA</mark>)		
βBs				
Selective	• <u>M</u> etoprolol	• <u>B</u> isoprolol	• <u>A</u> tenolol	• Less bronchospasm.
$\beta_1 Bs$			• <u>E</u> smolol	• Less delay in
				recovery from
				hypoglycemia.
				• Less risk of Raynaud's
				phenomenon.
Vasodilator	• Carvedilol	• Celiprolol		• Preferred as
βBs	$(\beta_1 \beta_2 Blocker$	(β ₁ blocker		antihypertensives.
	plus	plus		• Carvedilol
	α -blockade)	β_2		decreases
		agonist)		mortality in HF.

Members of Different Generations of βBs

- * <u>Other Vasodilator β Bs</u>: labetalol & nebivolol (see below).
- β Bs with **MSA** (local anesthetic effect due to Na⁺ channel blockade) \rightarrow corneal anesthesia \rightarrow In glaucoma, β Bs without MSA e.g. timolol & betaxolol are used instead.
- β Bs with **ISA** (initial stimulation then blocking of β -receptors i.e. partial agonist) induce less bradycardia, bronchospasm & vasospasm.

Pharmacokinetics of β-blockers

- βBs are classified according to their pharmacokinetics into 3 main groups:
 lipophilic, hydrophilic & balanced (properties in between those of lipophilic & hydrophilic).
- Esmolol is hydrophilic, yet it has a very short duration of action ($t_{1/2}$ 8 min) due to hydrolysis by plasma esterases.

	Lipophilic	Hydrophilic
Absorption	• Well absorbed	• Irregularly absorbed
First pass effect	• Extensive	• Less
Bioavailability	• Less	• More
Distribution	• More CNS penetration → more CNS side effects	 Less CNS penetration → less CNS side effects
Elimination	 Mainly hepatic → suitable in renal impairment. 	 Mainly renal → suitable in hepatic impairment.
t ¹ /2	• Short $t^{1/2} \rightarrow$ frequent administration.	 Long t¹/₂ (except esmolol) → once/ day administration.

Pharmacological Actions of βBs

A. Cardiovascular Actions

1. Antianginal effect: improve imbalance between O2 supply & demand

A. \downarrow O₂ demand:

- \downarrow HR & myocardial contractility.
- ↓ BP.

B. \uparrow **O**₂ supply:

- \uparrow coronary filling during diastole (by \downarrow HR \rightarrow \uparrow diastolic period).
- Redistribution of coronary flow to subendocardial area.

2. Antiarrhythmic effect

- Block intrinsic sympathetic activity in slow fibres:
 - \downarrow SAN rate & AVN conduction.
 - \downarrow Phase 4 slope \rightarrow slow automaticity of sympathetically induced ectopic focus.

3. Antihypertensive effect

- β₁-blockade (mainly)
 - Suppress **renin** release (mainly)
 - Negative inotropic & chronotropic effects.
- β_2 blockade
 - Central **sympatholytic** effect (block presynaptic β_2 receptors in NTS)
 - Peripheral sympatholytic effect (block presynaptic β_2 receptors)
- Resetting of baroreceptors.
- Some β-blockers are vasodilators.

4. Vasoconstriction (unopposed α actions)

- In ciliary vessels $\rightarrow \downarrow$ aqueous humor production $\rightarrow \downarrow$ IOP.
 - (+ blockade of β_2 in ciliary epithelium $\rightarrow \downarrow$ cAMP $\rightarrow \downarrow$ aqueous humor production)
- In mesenteric vessels $\rightarrow\downarrow$ hepatic blood flow.
- In skeletal muscles $\rightarrow \downarrow$ blood flow during exercise $\rightarrow \downarrow$ work capacity.

B. Non-cardiovascular Actions

1. Respiratory: bronchoconstriction - inhibit CA induced mast cell stabilization.

2. Metabolic

- Inhibit CA-induced lipolysis.
- \uparrow Plasma TG (\uparrow VLDL) \downarrow HDL (\downarrow HDL/LDL ratio).
- \downarrow Insulin release.
- \uparrow Plasma K⁺ during exercise (inhibit uptake by liver).
- Inhibit conversion of $T4 \rightarrow T3$.
- **3.** CNS: CNS depression (**lipophilic** β **B**) anxiolytics.

Therapeutic Uses

1. 2^{ry} to β_1 blockade

- a. Hypertension
- **b.** Angina pectoris: except vasospastic angina $\rightarrow \uparrow$ vasospasm.
- **c.** M. infarction (prophylactic & in acute phase $\rightarrow \downarrow$ infarct size & mortality).
- **d.** Arrhythmias.
- e. Heart failure: low doses of carvedilol, bisoprolol, nebivolol & metoprolol.
- **f.** Hyperthyroidism & thyrotoxic crisis (**propranolol**): cardio-protective, inhibit T4-T3 conversion & improve anxiety & tremors.
- **g.** Hypertrophic obstructive cardiomyopathy:↓ outflow resistance by relaxing hypertrophied septum.

2. 2^{ry} to β_2 blockade

- a. Open-angle glaucoma (timolol & betaxolol)
- **b.** Prophylactic in oesophageal varices: non-selective β Bs reduce portal blood flow by: splanchnic vasoconstriction (β_2 block) \downarrow COP (β_1 block).

c. Prophylaxis of migraine

- i. \downarrow NE release which triggers attack.
- ii. Vasoconstriction of extracranial blood vessels.

d. Essential tremors.

3. <u>2^{ry} to α blockade</u> (labetalol; of choice)

a. Acute dissecting aortic aneurysm

• Powerful antihypertensive due to combined $\alpha \& \beta$ blocking effects $\rightarrow \downarrow$ dissection while awaiting surgery.

b. Pheochromocytoma

 If propranolol is used it should be preceded by an α- blocker to avoid marked ↑ BP due to unopposed α-action after β-blockade.

4. <u>2^{ry} to CNS effects</u>:

• Social anxiety disorder

Adverse effects, contraindications & precautions

1. Due to β1 blockade

- Bradycardia heart Block.
- Heart failure (may be precipitated with high dose).
- Hypotension (more severe with vasodilator βBs).
- Hypertriglyceridaemia.
- **Mask** warning symptoms of hypoglycemic coma (tachycardia)

2. Due to β2 blockade

- Cold extremities, fatigue & Claudications (CI in peripheral vascular disease & vasospastic angina).
- Bronchospasm (CI in asthma).
- Prolongation of insulin-induced hypoglycemia.
- Hyperkalemia in susceptible patients (e.g. renal impairment & diabetes).

3. <u>CNS effects</u>: nightmares & depression.

4. Other adverse effects

i. Abrupt cessation → rebound angina & arrhythmias in ischemic heart disease (due to up regulation of β receptors; less severe with βBs with ISA) → gradual withdrawal.

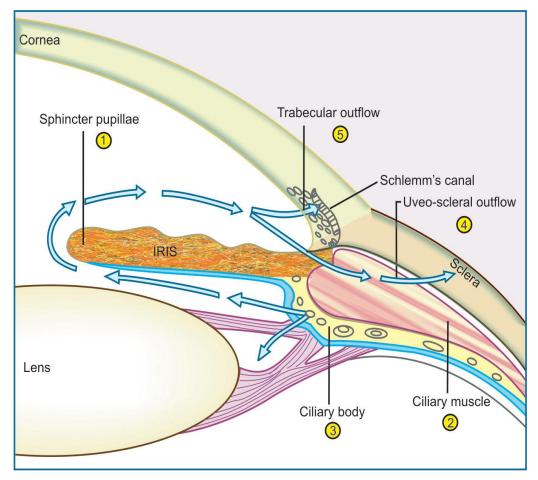
ii. Sexual dysfunction (impotence may be due to VC and \downarrow blood pressure in erectile tissue of penis).

Specific beta adrenoceptor antagonists

Esmolol

- It is an **ultra-short–acting** β_1 -selective adrenoceptor antagonist.
- Hydrophilic but has a short $t_{1/2}$ (8 minutes) due to hydrolysis by plasma esterases.
- Useful in Arrhythmias (supraventricular & due to thyrotoxicosis), perioperative hypertension, myocardial ischemia in acutely ill patients.

Labetalol


- Selective α_1 & Nonselective βB .
- Used in most hyperetensive emergencies.
- Used in hypertension during pregnancy & labor (pre-eclampsia).

Carvedilol

- α_1 -selective blocker & Nonselective $\beta B \rightarrow$ vasodilator βB .
- Beneficial in chronic heart failure \rightarrow
 - i. \downarrow Oxygen free radical \rightarrow antioxidant.
 - ii. Inhibits vascular smooth muscle mitogenesis

DRUGS FOR GLAUCOMA

- Glaucoma is characterized generally by raised intraocular pressure (IOP) with progressive form of optic nerve damage.
- Etiology: is unknown and there are many risk factors.
- The chief therapeutic measure is to lower IOP:
 - 1. \downarrow secretion of aqueous humor or
 - 2. \uparrow its drainage.

- Glaucoma is seen in two principal clinical forms:
 - 1. Open angle glaucoma
 - 2. Closed angle glaucoma

A. Open angle (wide angle, chronic simple) glaucoma

- It is probably a genetically predisposed degenerative disease affecting patency of the trabecular meshwork
- Ocular hypotensive drugs are used on a long term basis and constitute the definitive treatment in majority of cases:

<u>1. β-adrenergic blockers</u>

• Topical β blockers were first line drugs but recently, PG-F2α analogues are the preferred drugs.

Advantages of topical β blockers over miotics

- No change in pupil size: no diminution of vision in dim light and in patients with cataract
- No induced myopia which is especially troublesome in young patients
- No headache/brow pain due to persistent spasm of iris and ciliary muscles
- Ocular β blockers are lipophilic with no/weak local anesthetic activity (to avoid corneal hypoesthesia and damage).
- <u>Ocular side effects</u>: mild and infrequent → stinging, redness and dryness of eye, corneal hypoesthesia, allergic blepharoconjunctivitis and blurred vision
- Systemic adverse effects These are the major limitations in the use of ocular β blockers, and occur due to absorption through nasolacrimal duct.
- **Timolol** It is the prototype of ocular β blockers; is nonselective (β 1 + β 2) and has no local anaesthetic or intrinsic sympathomimetic activity.
- Levobunolol: very similar to timolol except for longer duration of action.

2. Prostaglandin analogues

- It acts by increasing uveoscleral outflow
- Latanoprost: PGF2α derivative has shown efficacy similar to timolol
- No systemic side effects
- Blurring of vision, increased iris pigmentation, thickening and darkening of eyelashes have occurred in some cases.

3. α-adrenergic agonists

- **Dipivefrine** It is a prodrug of Adrenaline → penetrates cornea → hydrolysis by the esterases enzymes→Adrenaline
- A/E: ocular burning .
- Apraclonidine It is a clonidine congener
- It decreases aqueous production by:
 - 1. $\alpha_2 \text{ (main)} \rightarrow \downarrow \text{cAMP}$ in the ciliary epithelium
 - 2. additional α_1 action \rightarrow VC of ciliary blood vessels.
- -A/E: Itching, lid dermatitis, follicular conjunctivitis, mydriasis, dryness of mouth and nose are
- Its use is restricted to short term control IOP after laser intervention

4. Carbonic anhydrase inhibitors

- Acetazolamide : orally
- **Dorzolamide:** topically

5. Miotics:

- Because of several drawbacks they are now used only as the **last** option.
- Pilocarpine, physostigmine, echothiophate

B. Angle closure (narrow angle, acute congestive) glaucoma

- It occurs in individuals with a narrow iridocorneal angle and shallow anterior chamber.
- The IOP remains normal until an attack is precipitated usually by mydriasis
- Failure to lower IOP quickly may result in loss of sight →Vigorous therapeutic measures to reduce IOP. is needed:
 - 1. Hypertonic mannitol (20%) IV infusion
 - 2. Acetazolamide: IV followed by oral is started concurrently.
 - 3. Miotic:e.g. pilocarpine
 - 4. Topical β blocker: Timolol
 - 5. Apraclonidine/latanoprost may be added.
- Drugs are used only to terminate the attack of angle closure glaucoma.
- Definitive treatment is surgical or laser iridotomy.
- Few cases, who have chronic narrow angle glaucoma, may be treated with a miotic/other ocular hypotensive drug for long periods