Renal Clearence

Unit V

Chapter 28

Dr Iman Aolymat

Clearance

• "Clearance" describes the rate at which substances are removed (cleared) from the plasma.

• Renal clearance of a substance is the volume of plasma <u>completely</u> cleared of a substance per min by the kidneys.

Clearance Technique

$$Cs \ x \ Ps = Us \ x \ V$$

$$Cs = Us \ x \ V = urine excretion rate$$

$$Ps Plasma conc$$

Where : Cs = clearance of substance S Ps = plasma conc. of substance S Us = urine conc. of substance SV = urine flow rate

Osmolar Clearance

osmolar clearance (C_{osm})= total clearance of solutes from the **blood** = Volume of plasma cleared of solutes each minute

example

If plasma osmolarity is 300 mOsm/L, urine osmolarity is 600 mOsm/L, and urine flow rate is 1 ml/min. Calculate the volume of plasma cleared of solutes each minute?

=2 ml of plasma are being cleared of solute each minute

"Free" Water Clearance (C_{H2O})

Free-water clearance (C_{H2O}) =rate of solute-free water excretion

is calculated as the difference between water excretion (urine flow rate) and osmolar clearance

$$C_{H_2O} = V - C_{osm} = V - \frac{(U_{osm} \times \dot{V})}{P_{osm}}$$

If: Uosm < Posm, $C_{H2O} = +$ indicating water is being removed If: Uosm > Posm, $C_{H2O} = -$ indicating water conservation

Question

Given the following data, calculate "free water" clearance : urine flow rate = 6.0 ml/min urine osmolarity = 150 mOsm /L \rightarrow Is find plasma osmolarity = 300 mOsm / L \rightarrow examples

Is free water clearance in this example positive or negative ?

$$CH_2O = V - \frac{Uosm \ x \ V}{Posm} = 6.0 - (150 \ x \ 6)$$

300

$$= 6.0 - 3.0$$

= +3.0 ml / min (positive)

Use of Clearance to Measure GFR

For a substance that is freely filtered, but <u>not</u> reabsorbed or secreted (inulin, ¹²⁵ I-iothalamate, creatinine), renal clearance is <u>equal</u> to GFR

Creatinine clearance and plasma creatinine concentration can be used to estimate GFR

- cleared from the body fluids almost entirely by glomerular filtration
- not require intravenous infusion
- is not a perfect marker of GFR because a small amount of it is secreted by the tubules → amount of creatinine excreted > amount filtered
- a slight error in measuring plasma creatinine

Plasma creatinine can be used to estimate changes in GFR

Use of Clearance to Estimate Renal Plasma Flow

Theoretically, if a substance is completely cleared from the plasma, its clearance rate would equal <u>renal plasma flow (RPF)</u>

Paraminohippuric acid (PAH) is 90% filtered and secreted and is almost completely cleared from the renal plasma

amount of substance delivered to kidneys in blood= amount excreted in urine (RPF x Ps) = (Us xV) RPF = Us xV/Ps=CsCx = renal plasma flow

To calculate <u>actual</u> RPF , one must correct for incomplete extraction of PAH

 $\dot{V} = 1 \text{ ml/min}$

Filtration fraction is calculated from GFR divided by RPF

RPF =PAH clearance GFR =inulin clearance

If the RPF is 650 ml/min and the GFR is 125 ml/min, the filtration fraction (FF) is calculated as FF = GFR/RPF = 125/650 = 0.19

Calculation of Tubular Reabsorption

If the rates of **glomerular filtration** and **renal excretion** of a substance are known, one can calculate whether there is a net reabsorption or a net secretion of that substance by the renal tubules.

if the rate of **excretion** of the substance (Us \times V) < the **filtered** load of the substance (GFR \times Ps), then some of the substance must have been **reabsorbed** from the renal tubules.

if the excretion rate of the substance > filtered load, then the rate of excretion= sum of the rate of glomerular filtration plus tubular secretion.

Calculation of Tubular Reabsorption

Reabsorption = Filtration - Excretion Filt $s = GFR \times Ps$ Excret $s = Us \times V$

```
Urine flow rate = 1 ml/min

Urine concentration of sodium (U_{Na}) = 70 \text{ mEq/L}

= 70 \mu Eq/ml

Plasma sodium concentration = 140 mEq/L

= 140 \mu Eq/ml

GFR (inulin clearance) = 100 ml/min

Calculate

1-Filtered sodium load

2- Urinary sodium excretion

3- Tubular reabsorption
```

```
Answer
1-filtered sodium load= GFR x P_{Na}
=100 ml/min x 140 \mu Eq/ml = 14,000 \mu Eq/min.
```

```
2-Urinary sodium excretion =U_{Na} \times urine flow rate=70 x1 =70 \mu Eq/min.
```

```
3- tubular reabsorption of Na= filtered load - urinary excretion 14,000 \mu Eq/min - 70 \mu Eq/min = 13,930 \mu Eq/min.
```

Acid-Base Regulation

Chapter 31 Unit V

Dr Iman Aolymat

Introduction

Multiple acid-base buffering mechanisms are nvolved in maintaining normal H+ concentrations in both the extracellular and intracellular fluid:

1-blood 2-cells 3-lungs 4-kidneys

Acid-Base Fundamentals

- An Acid = a molecule that can release H⁺ in a solution.
 - H₂CO₃ (carbonic acid)
 - HCI (hydrochloric acid)
- *A base* = a molecule that accepts H⁺ in a solution.
 - Bicarbonate ions (HCO₃-).
 - Hydrogen phosphate (HPO₄-²)
 - Proteins in body function as bases because some of amino acids that make up proteins have net negative charges that readily accept H+.

Strong vs weak Acid/Base

A strong base is one that reacts **rapidly** and strongly with $H+ \rightarrow$ quickly removing H+ from a solution. Example is $OH- + H+ \rightarrow H2O$

weak base e.g HCO3– because it binds with H+ much more weakly than does OH–.

Most acids and bases in ECF that are involved in normal acid-base regulation are **weak** acids and bases

Strong acids dissociate rapidly and release large amounts of H⁺ in solution Weak acids dissociate incompletely and less strongly releasing small amounts of H⁺ in solution

Alkalosis= excess removal of H+ from the body fluids

Acidosis= excess addition of H+

$[H^+]$ & the pH

- H+] is precisely regulated at 0.00004 mEq/L (important for enzyme functions)
- H⁺ ion concentrations are expressed as pH.
- pH = Log [H⁺]
 - If the [H⁺] increase \rightarrow pH will decrease (more acidic)
 - If the [H⁺] decrease \rightarrow pH will increase (more alkaline)

Normally pH= 7.2-7.44

Table 31-1 pH and H⁺ Concentration of Body Fluids

	H ⁺ Concentration (mEq/L)	рН
Extracellular fluid		
Arterial blood	$4.0 imes 10^{-5}$	7.40
Venous blood	$4.5 imes 10^{-5}$	7.35
Interstitial fluid	$4.5 imes 10^{-5}$	7.35
Intracellular fluid	$1 imes 10^{-3}$ to $4 imes 10^{-5}$	6.0-7.4
Urine	3×10^{-2} to 1×10^{-5}	4.5-8.0
Gastric HCl	160	0.8

Intracellular pH usually is< plasma because the metabolism of the cells produces acid especially (H2CO3).

Hypoxia of and poor blood flow to tissues \rightarrow acid accumulation and \downarrow intracellular pH.

Acid Production by the Body

- The body produces large amounts of acids on daily basis as by products of metabolism.
 - Metabolism of dietary proteins.
 - Anaerobic metabolism of carbs and fat.
- Acids in the body are of two kinds:
 - 1. Volatile (CO_2)
 - 2. Non-volatile "fixed" (sulfuric acid, lactic acid)

The Body's Defense Against Changes in [H⁺]

Three main systems:

1. Body fluid buffers.

Works within seconds (bind acid/base).

2. Lungs

Works within minutes (eliminate CO2).

3. Kidneys

Works within hours-days (EXCRETE ACID/BASE). The most powerful of the three.

Chemical Buffer Systems in the Body

- There are 3 chemical buffers in the body;
- 1. The Bicarbonate buffer system.
- 2. The phosphate buffer system.
- 3. Proteins.
- They are the 1st line of defence against changes in pH i.e. [H⁺], act within seconds.
- Some are more powerful extracellularly and others are more powerful intracellularly.

The Bicarbonate Buffer System

- The main ECF buffer system
- Composed of:
 - A weak acid (H2CO3).
 - Its conjugated base (NaHCO3).
 - **1.** H_2CO_3 forms in the body by the reaction of $CO_2 \& H_2O$

 $CO_2 + H_2O \xrightarrow{Carbonic anhydrase} H_2CO_3$

2. H_2CO_3 ionizes weakly to form small amounts of H⁺ & HCO_3^-

$$H_2CO_3 \longleftarrow H^+ \& HCO_3^-$$

3. The second component is NaHCO₃ which dissociates to form Na⁺ & HCO₃⁻

NaHCO₃ → Na⁺ & HCO₃⁻

The Bicarbonate Buffer System

Putting it all together;

$$CO_2 + H_2O \xrightarrow{\longrightarrow} H_2CO_3 \xleftarrow{\longrightarrow} H^+ + \underbrace{HCO_3^-}_{\overset{+}{Na^+}}$$

$$\begin{array}{ll} \mbox{Adding ACID (HCl)} & (HCl \rightarrow H^+ + Cl^-) & \mu n^{\mbox{$\mathbf{0}$}} \\ & + HCO_3^- \rightarrow H_2CO_3 \rightarrow CO_2 + H_2O \\ & & W^{eak} \, ac^{id} \end{array}$$

Adding base (NaOH)

$$\begin{array}{ccc} CO_2 + H_2O \longrightarrow H_2CO_3 \longrightarrow \uparrow HCO_3^- + H^+ \\ & + & + \\ NaOH & Na \end{array}$$

The Henderson-Hasselbalch Equation

What is the HHE?

• It is an equation that enables the calculation of pH of a solution.

What is it? $pH = pK + \log \frac{HCO3^{-}}{0.03 X PCo_2}$

K = dissociation constant, pK = 6.10.03 = solubility of CO₂ The Henderson-Hasselbalch Equation

$$CO_2 + H_2O \xleftarrow{CA} H_2CO_3 \xleftarrow{H^+} HCO_3^-$$

$$pH = pK + \log \frac{[HCO3^-]}{0.03 \, X \, PCO2}$$

pK = dissociation constant= 6.1 0.03 = solubility of CO₂

What do we understand from this equation?

1. pH αHC03Regulated by kidneysPC02Regulated by lungs

Each element of the buffer system is regulated

- $\uparrow\uparrow$ HCO₃⁻ will $\uparrow\uparrow$ pH
- ↑↑ PCO2 will ↓↓ pH

Other Buffering Systems

The phosphate buffer:

- Plays a major role in buffering intracellular & renal tubular fluid.
- Composed of;
 - H₂PO₄- (dihydrogen phosphate/ACID)
 - HPO₄-2 (Hydrogen phosphate/BASE)

Proteins: PLENTIFUL

- Contributes to buffering inside cells → H+ /HCO3diffusion to the cell.
- E.g. Hb.

Summary of Body's Buffering Systems

- Buffer systems do not work independently in body fluids but actually work together.
- A change in the balance in one buffer system, changes the balance of the other systems.
- Buffers do not reverse the pH change, they only limit it.
- Buffers do not correct changes in [H⁺] or [HCO₃-], they only limit the effect of change on body pH until their concentration is properly adjusted by either the lungs or the kidney.