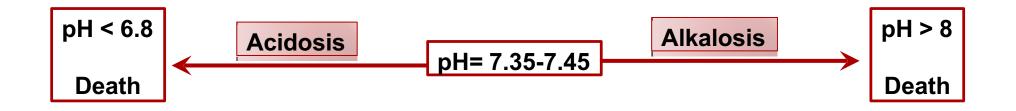
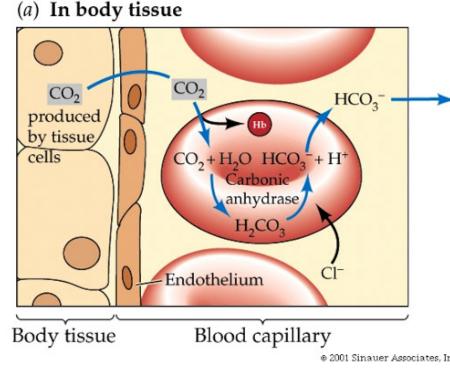
Acid-Base Regulation-II


Chapter 31 Unit V

Dr Iman Aolymat

Respiratory regulation of acid-base balance

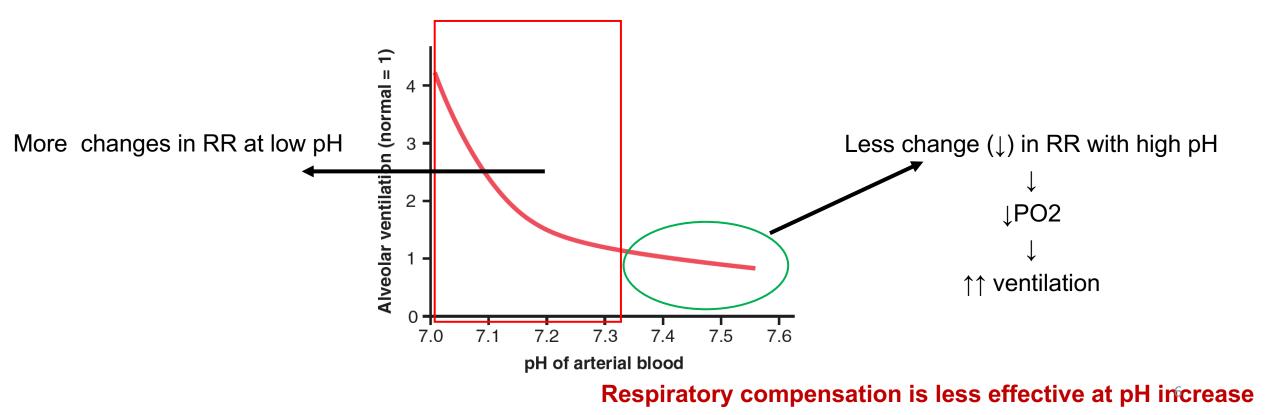
Alkalosis= excess removal of H+ from the body fluids


Acidosis= excess addition of H+

Respiratory Regulation of A/B

- 2nd line of defence against acid-base disturbances in the body.
- By modulating CO₂ excretion.
- Normally, PCO2 = 40 mmHg (35-45 mmHg).
- \uparrow CO2 formation \rightarrow \uparrow ECF CO2 \rightarrow \uparrow ECF PCO2 & Vice versa.

 $\uparrow \mathsf{ECF} \ \mathsf{CO2} \rightarrow \uparrow \mathsf{H2CO3} \rightarrow \uparrow \mathsf{H+}$


Respiratory regulation of A/B

- Response occurs within 3-12 minutes.
- $\uparrow\uparrow$ ventilation (RR) $\rightarrow \downarrow\downarrow$ PCO₂ \rightarrow \uparrow PH
- $\downarrow\downarrow$ ventilation (RR) \rightarrow accumulation of CO2 $\rightarrow\uparrow\uparrow$ P_{CO2} $\rightarrow\downarrow$ PH

Respiratory Regulation of A/B

• ↓↓ [H⁺] → ↑pH → ↓↓ ventilation (RR) → accumulation of CO₂→↑↑ P_{CO₂}. • ↑↑ [H⁺] → ↓pH → ↑↑ ventilation (RR) → ↓↓ PCO₂

Renal Regulation of Acid-Base Balance

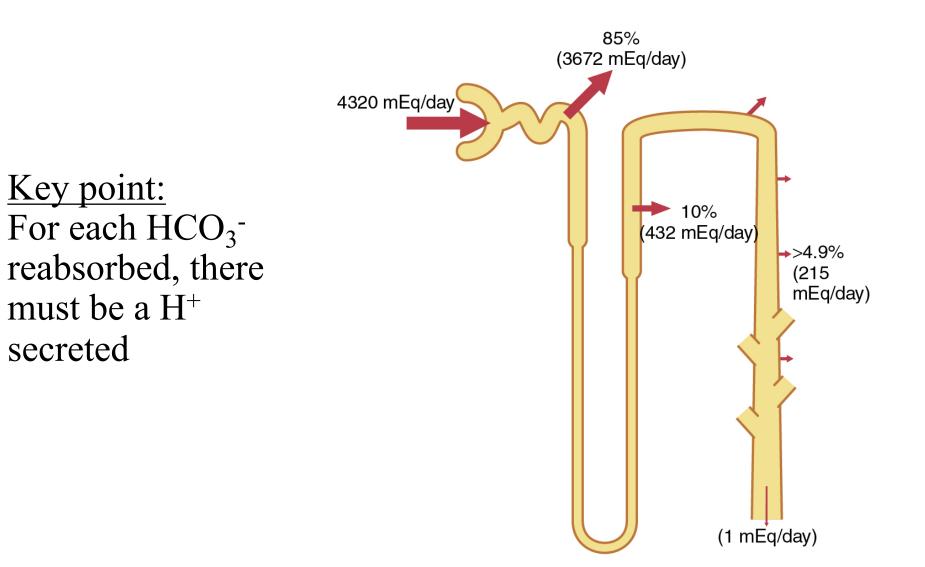
- 3rd line of defence against acid-base disturbances and the most powerful.
- Kidneys conserve HCO3 and <u>excrete acidic or basic urine</u> depending on body needs

 \downarrow acid in ECF \downarrow base in ECF

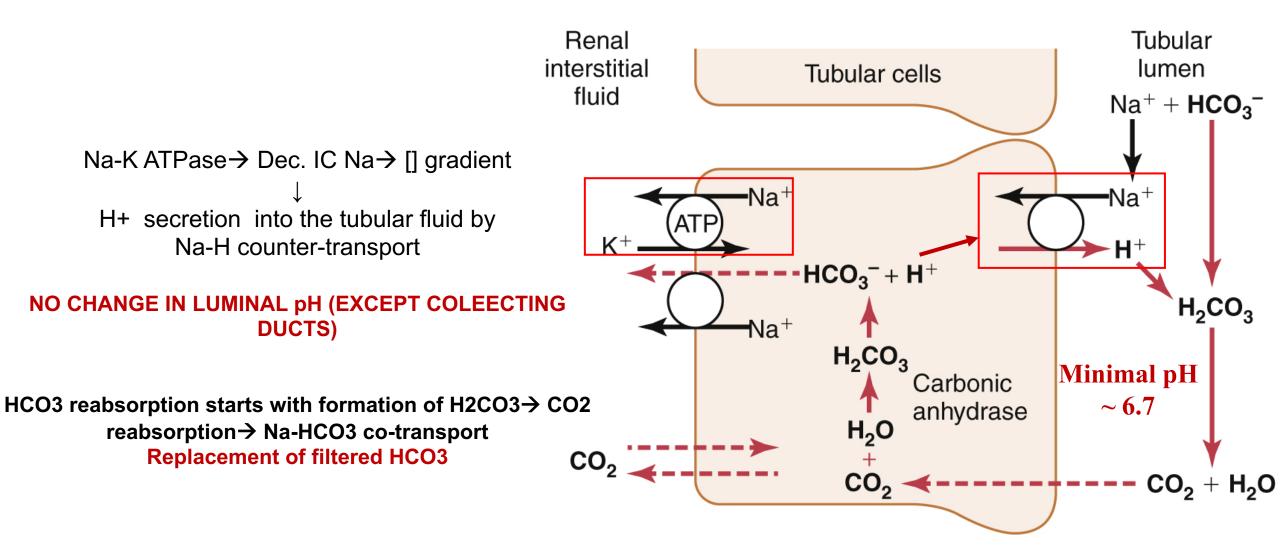
• Kidneys eliminate non-volatile

acids (H_2SO_4 , H_3PO_4) (~ 80 mmol/day)

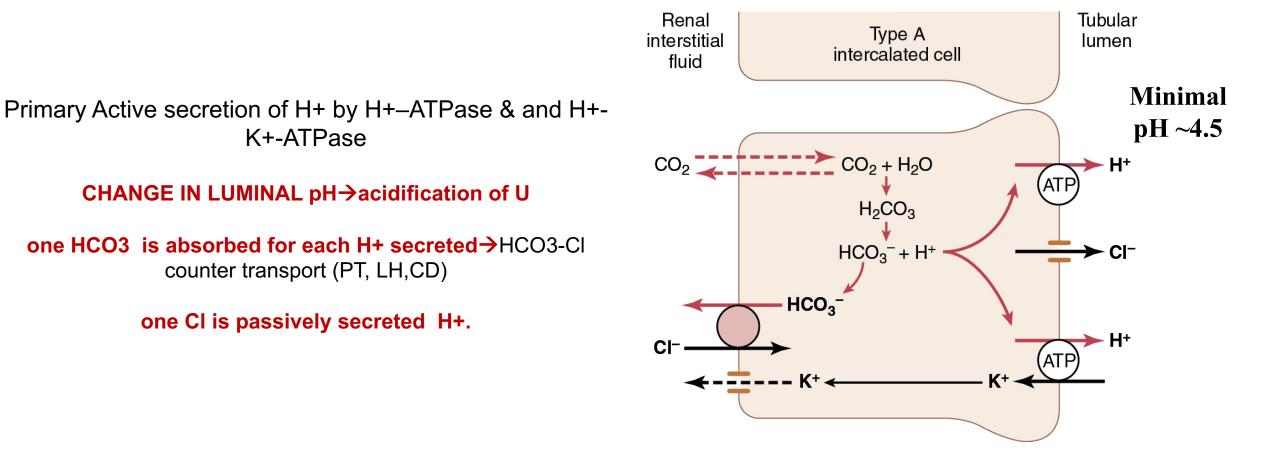
- Filtration of HCO_3^- (~ 4320 mmol/day)
- Secretion of H^+ (~ 4400 mmol/day)
- Reabsorption of HCO_3^- (~ 4319 mmol/day)
- Production of new HCO_3^- (~ 80 mmol/day)
- Excretion of HCO₃⁻ (1 mmol/day)


H+ is not excreted as free H+ but rather in combination with other urinary buffers, especially phosphate and ammonia.

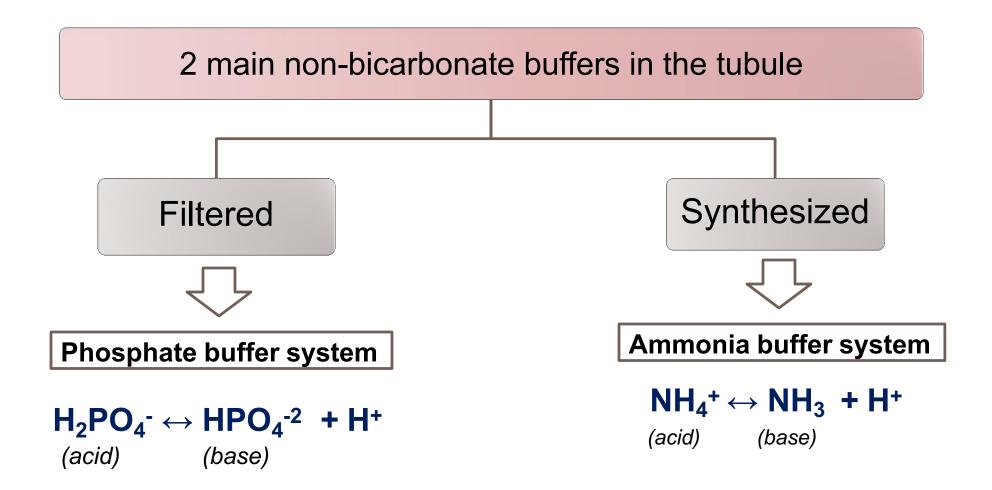
Renal compensation of Acid-Base Balance

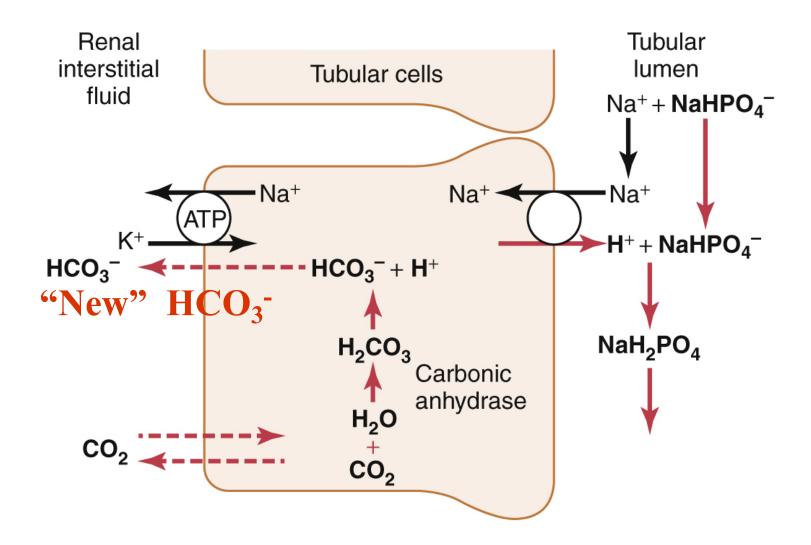

- Acidosis:
 - increased H⁺ secretion
 - increased HCO₃⁻ reabsorption
 - production of new HCO₃-

- Alkalosis:
 - decreased H⁺ secretion
 - decreased HCO₃⁻ reabsorption
 - loss of HCO₃⁻ in urine


HCO3 reabsorption & secretion of H⁺ in renal tubule

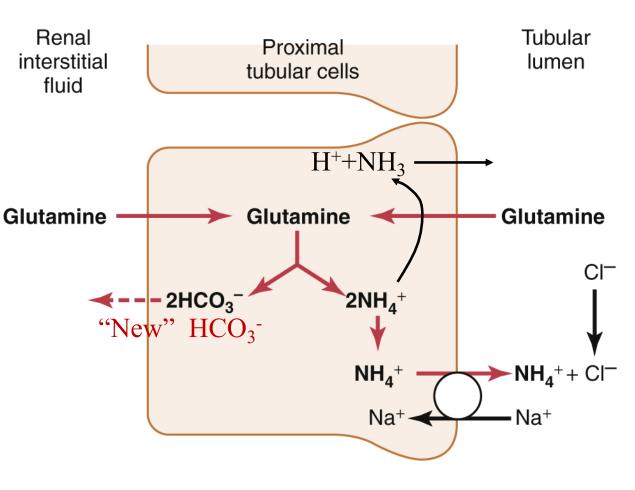
Mechanisms of HCO₃⁻ reabsorption and Na⁺-H⁺ exchange in PT, thick loop of Henle & early DT


HCO₃⁻ reabsorption and H⁺ secretion in intercalated cells of late distal and collecting tubules

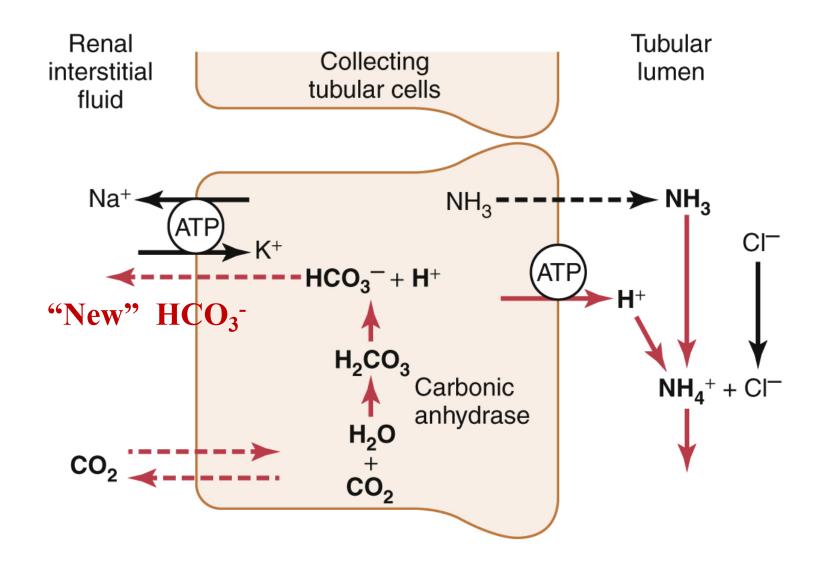

- Only a limited number of H⁺ can be excreted in its free form in urine.
- Lowest possible urine pH=4.5 $\rightarrow \approx 0.04$ mmol/L of free H⁺.
- How does the kidney excrete the extra H⁺?

Non-Bicarbonate Buffers in the Tubular Lumen

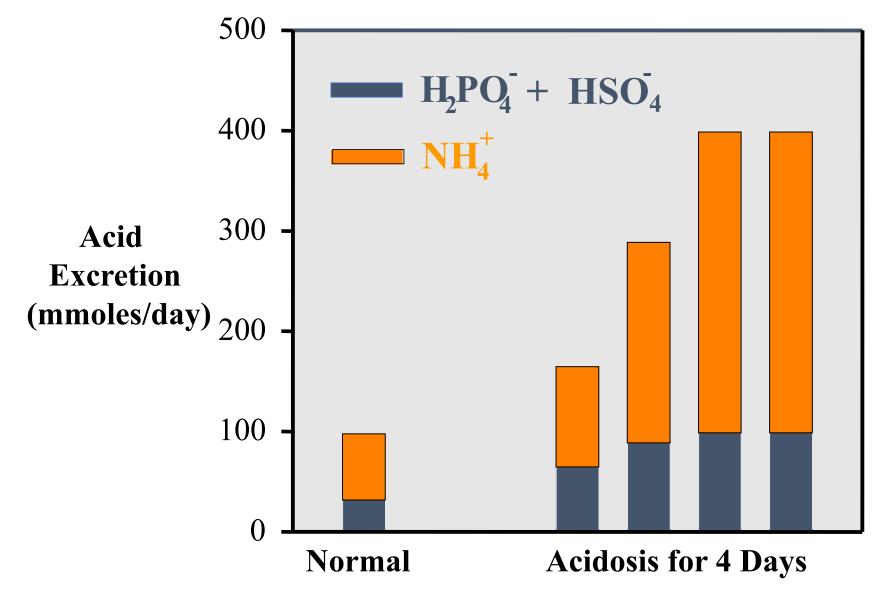
The extra H⁺ secreted will need to be buffered in the tubular lumen



Buffering of secreted H⁺ by filtered phosphate (NaHPO₄⁻) and generation of "new" HCO₃⁻



Production and secretion of NH₄⁺ and HCO₃⁻ by proximal, thick loop of Henle and distal tubules


- Quantitatively, NH4+ system is more important than the phosphate buffer system for H⁺ excretion in urine.
- It is the most important system in case of acidosis.
- Ammoniagenesis → from glutamine

Buffering of H⁺ by NH₃ in collecting tubules

Phosphate and Ammonium Buffering In Chronic Acidosis

Quantifying Renal Acid-Base Excretion

HCO3 excretion=urine flow rate X [HCO3 $_{\cup}$]. HCO3 excretion= adding an H+ to the blood

amount of **new** HCO3 added to blood =H⁺ excretion with non-HCO3 buffers

= NH4+ excretion_+phosphate excretion

= V x[NH4u]+ urinary titrable acid -

NaOH, to a pH of 7.4 number of milliequivalents of NaOH= number of milliequivalents

of secreted H to combine with phosphate

Net acid excretion= NH4 excretion+ Urinary titratable acid- HCO3 excretion -

=adding an H+ to the blood

net acid excretion must equal the nonvolatile acid production in the body.

Quantifying Renal Acid-Base Excretion

Net acid excretion= NH4 excretion+ Urinary titratable acid- HCO3 excretion

```
In acidosis → net acid excretion??

NH4 excretion ↑ ↑ ↑

↓

Net acid excretion ↑

Net acid excretion=HCO3 added to blood
```

```
In alkalosis → net acid excretion??

NH4 excretion=0

HCO3 excretion ↑↑↑

↓

Net acid excretion is negative

=HCO3 is lost & NO new HCO3 formation
```

Table 31-2Plasma or Extracellular Fluid FactorsThat Increase or Decrease H⁺ Secretion and HCO_3^- Reabsorption by the Renal Tubules

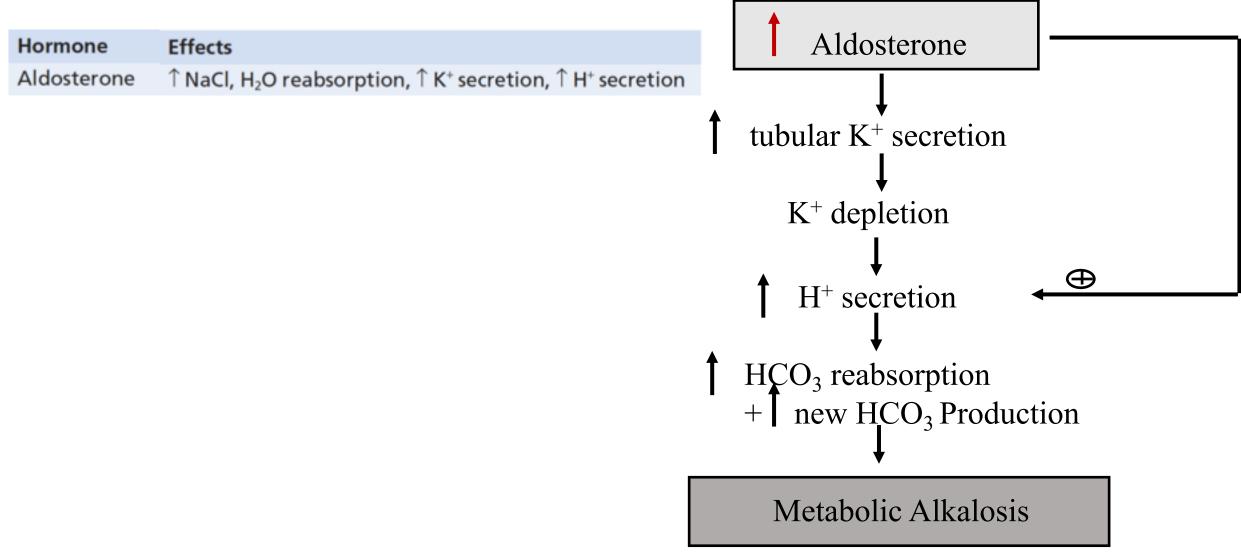
Increase H ⁺ Secretion and HCO ₃ ⁻ Reabsorption	Decrease H ⁺ Secretion and HCO ₃ ⁻ Reabsorption
↑ Pco ₂	$\downarrow Pco_2$
↑ H ⁺ , ↓ HCO ₃ ⁻	\downarrow H ⁺ , \uparrow HCO ₃ ⁻
\downarrow Extracellular fluid volume	\uparrow Extracellular fluid volume
↑ Angiotensin II	\downarrow Angiotensin II
↑ Aldosterone	↓ Aldosterone
Hypokalemia	Hyperkalemia

Renal correction of acidosis

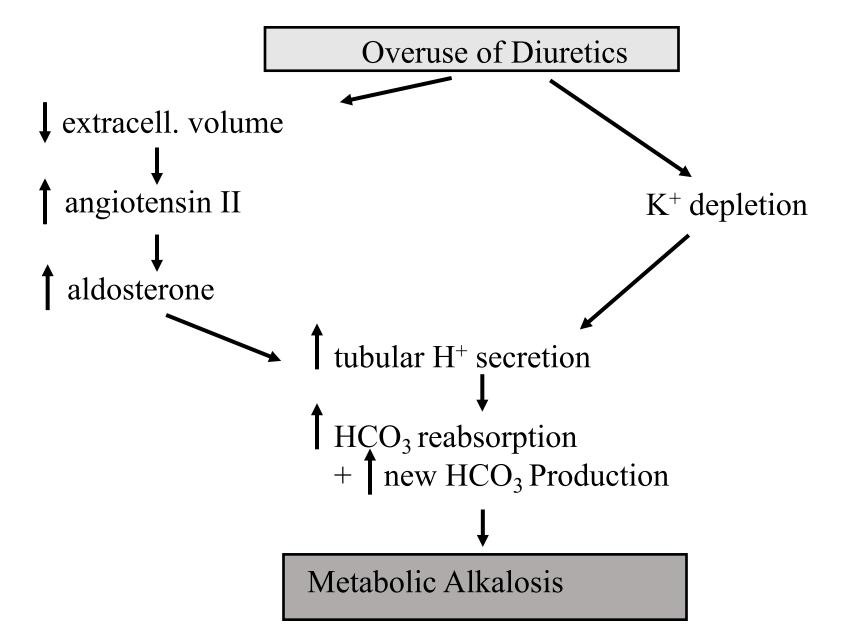
				рН	H⁺	Pco ₂	HCO₃ [−]	
	TT	CO2	Normal	7.4	40 mEq/L	40 mm Hg		
Acidosis → ↓pH	$pH \propto \frac{H}{Pq}$	<u>CO3</u> CO2		7.35-7.4	-5	35-45	22-26	

	Acidosis	Acidosis pH< 7.35			
Туре	Respiratory	Metabolic			
Change	↑PCO2	↓ HCO3			
Causes	Hypoventilation- respiratory centers damage Airways obstruction Impaired exchange of gases Neuromuscular dis	excessive acid →Metabolic dis (e.g DM, shock)/Ingestion of Acids→aspirin/Impaired acid secretion HCO3 loss→ diarrhea & RF			
Compensation 个 pH	Renal $\rightarrow \uparrow$ HCO3 reabsorption	$ \uparrow HCO3 reabsorption \\ Respiratory \rightarrow hyperventilation $			
Diagnosis	pH↓ ↑PCO2 ↑HCO3	pH↓ ↓PCO2 ↓ HCO3			

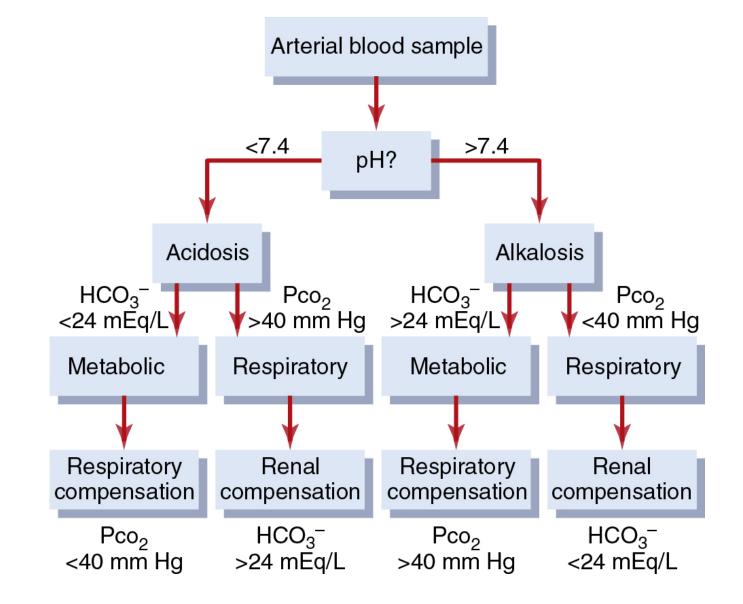
Renal correction of alkalosis

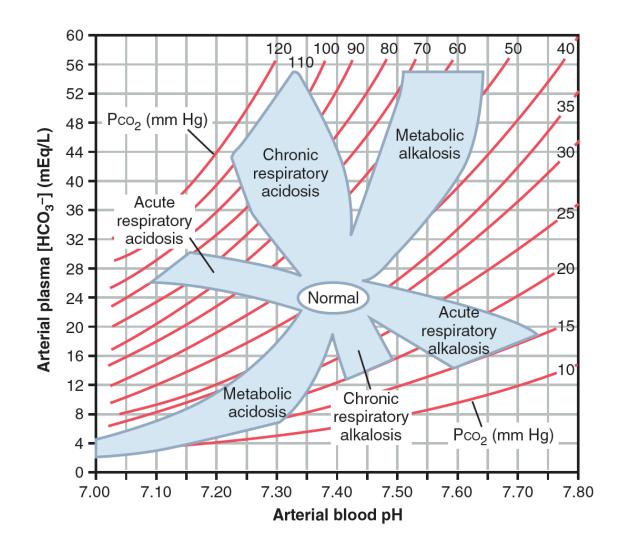

Alkalosis $\rightarrow \uparrow pH$

 $pH \propto \frac{\text{HCO3}}{PCO2}$


	pН	H⁺	Pco ₂	HCO₃ [−]
Normal	7.4	40 mEq/L	40 mm Hg	24 mEq/L
	7.35-7.4	-5	35-45	22-26

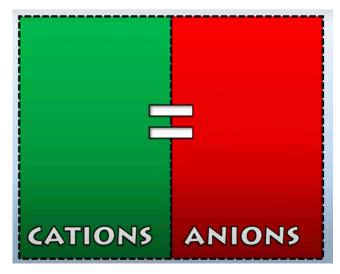
	Alkalosis pH> 7.45			
Туре	Respiratory	Metabolic		
Change	↓PCO2	↑HCO3		
Causes	Hyperventilation-fever, psychoneurosis, meningitis, early exercise, ascending to high altitude	 -Acid loss → persistent vomiting -↑HCO3 → thiazides/loop diuretics- Hypovolemia-Ingestion of alkaline drugs (NaHCO3) ↑aldosterone & cortisol 		
Compensation ↓ pH	Renal→ ↓HCO3 reabsorption	Renal $\rightarrow \downarrow$ HCO3 reabsorption Respiratory \rightarrow hypoventilation		
Diagnosis	pH ↑ ↓PCO2 ↓ HCO3	pH ↑ ↑PCO2 ↑HCO3		

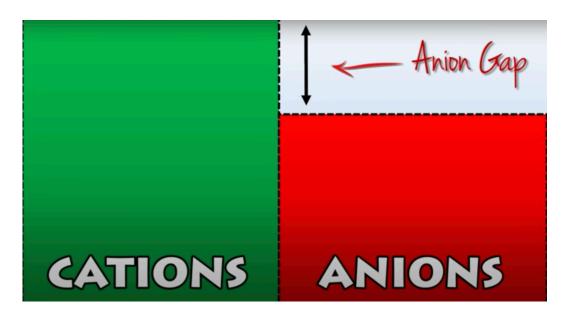

Hyperaldosteronism (aldosteronism) and acid base disturbances

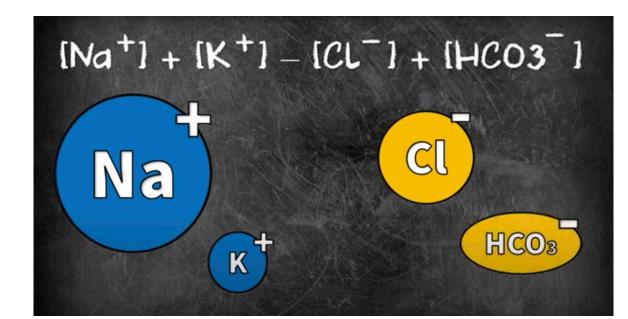


Acid base disturbances caused by overuse diuretics

Classification of Acid-Base Disorders from plasma pH, pCO₂, and HCO₃⁻




Mixed disorders

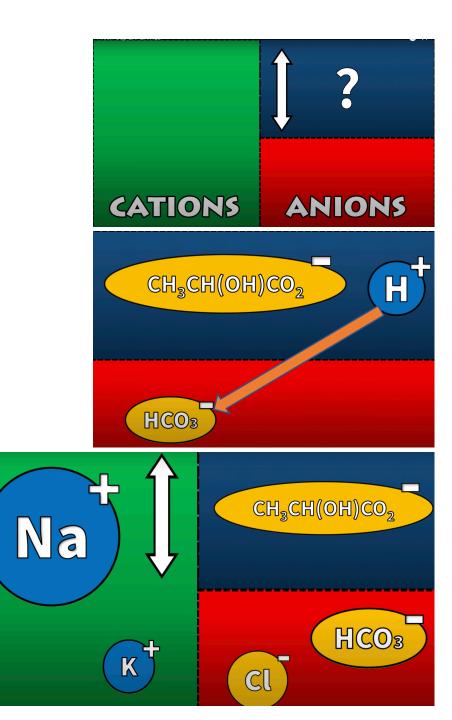

Anion Gap as a Diagnostic Tool

In body fluids: total cations = total anions $Na^+ = Cl^- + HCO_3^- + unmeasured anions$ unmeasured anions = $Na^+ - Cl^- - HCO_3^- = anion gap$ = 142 - 108 - 24 = 10 mEq/L

Normal anion gap = 8 - 16 mEq / L

Anion Gap in <u>Metabolic Acidosis</u>

• \uparrow anion gap \rightarrow \uparrow unmeasured anions (organic acids)


anion gap = Na^+ - Cl^- - $\downarrow HCO_3$ normochloremic metabolic acidosis

> Increased Anion Gap (Normochloremia) Diabetes mellitus (ketoacidosis) Lactic acidosis Chronic renal failure Aspirin (acetylsalicylic acid) poisoning

Methanol poisoning

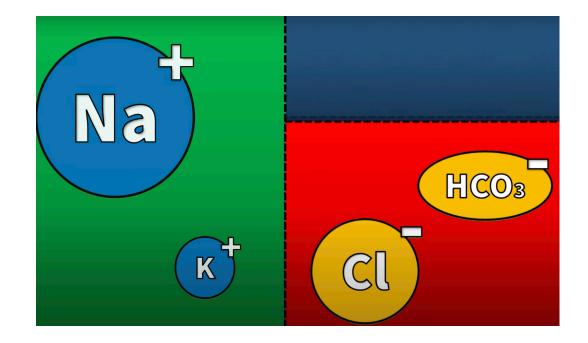
Ethylene glycol poisoning

Starvation

Anion Gap in <u>Metabolic Acidosis</u>

• loss of HCO_3^- = normal anion gap

anion gap = Na⁺ - \uparrow Cl⁻ - \downarrow HCO₃⁻ hyperchloremic metabolic acidosis


> Normal Anion Gap (Hyperchloremia)

Diarrhea

Renal tubular acidosis

Carbonic anhydrase inhibitors

Addison's disease

	рН	H⁺	Pco ₂	HCO₃⁻
Normal	7.4	40 mEq/L	40 mm Hg	24 mEq/L
	7.35-7.4	5	35-45	22-26

A patient presents in the emergency room and the following data are obtained from the clinical labs: plasma pH= 7.15, HCO₃⁻ = 8 mmol/L, pCO₂= 24 mmHg This patient is in a state of:

- 1. metabolic alkalosis with partial respiratory compensation
- 2. respiratory alkalosis with partial renal compensation
- 3. metabolic acidosis with partial respiratory compensation
- 4. respiratory acidosis with partial renal compensation

H⁺ HCO₃pH PCO₂ Normal 7.4 40 mEq/L 40 mm Hg 24 mEq/L 35-45 22-26 7.35-7.45 Laboratory values for an uncontrolled diabetic patient include the following: arterial pH = 7.25Plasma HCO₃⁻ = 12Metabolic Acidosis Plasma $P_{CO_2} = 28$ **Respiratory Compensation** Plasma $Cl^2 = 102$ Plasma $Na^+ = 142$

What type of acid-base disorder does this patient have?

What is his anion gap?

Anion gap = 142 - 102 - 12 = 28

Which of the following are the most likely causes of his acid-base disorder?

a. diarrhea

b. diabetes mellitus

- c. Renal tubular acidosis
- d. primary aldosteronism

Increased Anion Gap (Normochloremia)

Diabetes mellitus (ketoacidosis)

Lactic acidosis

Chronic renal failure

Aspirin (acetylsalicylic acid) poisoning

Methanol poisoning

Ethylene glycol poisoning

Starvation

	рН	H⁺	Pco ₂	HCO₃⁻
Normal	7.4	40 mEq/L	40 mm Hg	24 mEq/L
	7.35-7.4	5	35-45	22-26

Laboratory values for a patient include the following:

arterial pH = 7.34 Plasma $HCO_3^- = 15$ Plasma $P_{CO_2} = 29$ Plasma $Cl^- = 118$ Plasma $Na^+ = 142$ Metabolic Acidosis Respiratory Compensation

What type of acid-base disorder does this patient have? What is his anion gap?

Anion gap = 142 - 118 - 15 = 9 (normal)

Which of the following are the most likely causes of his acid-base disorder?

a. diarrhea

b. diabetes mellitusc. aspirin poisoningd. Chronic renal failure

 Normal Anion Gap (Hyperchloremia)
 Diarrhea
 Renal tubular acidosis
 Carbonic anhydrase inhibitors
 Addison's disease

	pН	H⁺	Pco ₂	HCO₃⁻
Normal	7.4	40 mEq/L	40 mm Hg	24 mEq/L
	7.35-7.4	5	35-45	22-26

Two or more underlying causes of acid-base disorder.

pH= 7.60 pCO₂ = 30 mmHg plasma $HCO_3^- = 29$ mmol/L

What is the diagnosis?

Mixed Alkalosis

- Metabolic alkalosis : increased HCO₃⁻
- Respiratory alkalosis : decreased pCO₂

Question

	рН	H⁺	Pco ₂	HCO₃ [−]
Normal	7.4	40 mEq/L	40 mm Hg	24 mEq/L
	7.35-7.4	.5	35-45	22-26

A plasma sample revealed the following values in a patient:

$$pH = 7.12$$

 $PCO_2 = 50$
 $HCO_3^- = 18$

diagnose this patient's acid-base status:acidotic or alkalotic?Acidoticrespiratory, metabolic, or both?Both

Mixed acidosis: metabolic and respiratory acidosis

The end