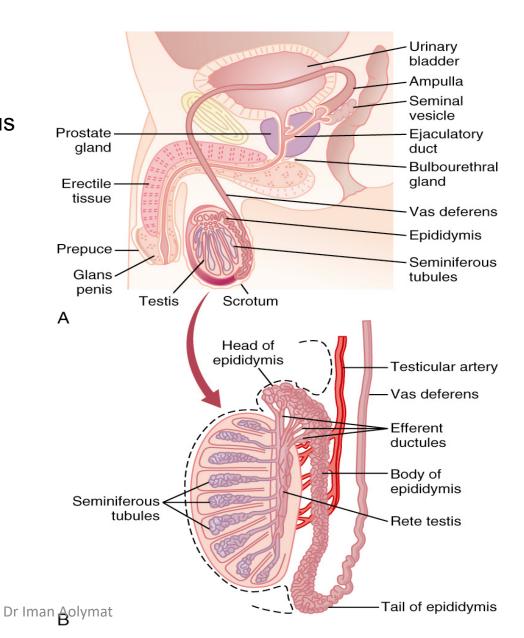
## Reproductive and Hormonal Functions of the Male-I

**Unit XIV** 

Chapter 81

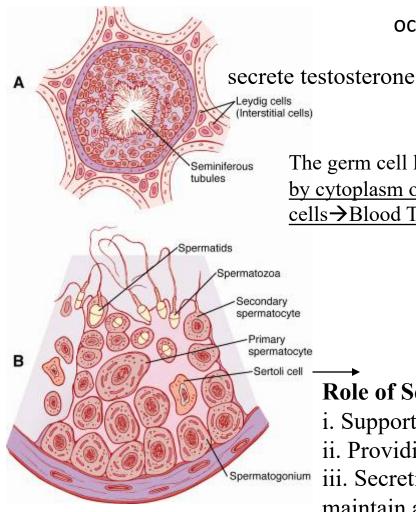
## **Male Reproductive System**


#### **Primary Sex Organs**

Testes: composed of up to 900 coiled seminiferous tubules→spermatogenesis

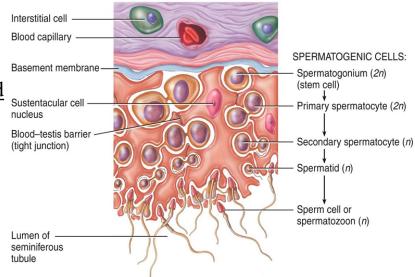
#### **Accessory Sex Organs**

Accessory sex organs in males are:


- 1. Seminal vesicles
- 2. Prostate gland
- 3. Urethra
- 4. Penis



## Functions of the male reproductive system


- <u>Testes</u>  $\rightarrow$  produce sperm and male sex hormone **testosterone**.
- <u>Ducts</u>  $\rightarrow$  transport, store, and assist in maturation of sperm.
- Accessory sex glands > secrete most of the liquid portion of semen.
- Penis -> contains the urethra, a passageway for ejaculation of semen and excretion of urine.

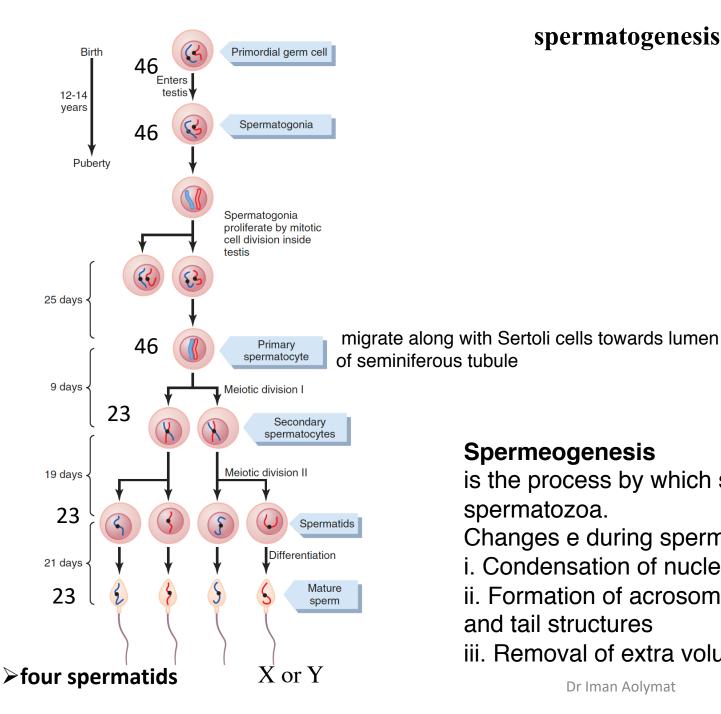
#### Male reproductive system



#### occurs in the seminiferous tubules of the testes

The germ cell line is completely invested by cytoplasm of surrounding Sertoli cells→Blood Testes Barrier




Transverse section of part of seminiferous tubule

#### Role of Sertoli Cell in Spermatogenesis

- i. Supporting and nourishing the germ cells + Phagocytosis
- ii. Providing hormonal substances necessary for spermatogenesis
- iii. Secreting androgen-binding protein (ABP)→ binds testosterone and helps maintain a high concentration of testosterone (stimulated by FSH)
- iv. Releasing sperms into the lumen of seminiferous tubules (spermination)→sperm are released from their connections to sustentacular cells.
- v. Blood Testies Barrier Dr Iman Aolymat

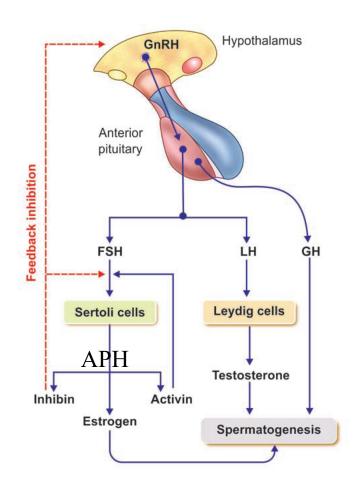
## **Functions of Sertoli Cells**

- Synthesze and Secret the following
- Secretes inhibits FSH secretion. (*regulator of spermatogenesis*).
- Secrets Activin: function not clear. (<u>regulator of spermatogenesis</u>)
- MIS (Mullerian-inhibiting substance): causes regression of mullerian ducts in males during fetal life.
- Estrogen: role not known, possibly controlling testosterone production.



#### **Spermeogenesis**

is the process by which spermatids become matured spermatozoa.


Changes e during spermeogenesis:

- i. Condensation of nuclear material
- ii. Formation of acrosome, mitochondrial spiral filament and tail structures
- iii. Removal of extra volume of nonessential cytoplasm.

#### **Hormonal Factors Stimulates Spermatogenesis**

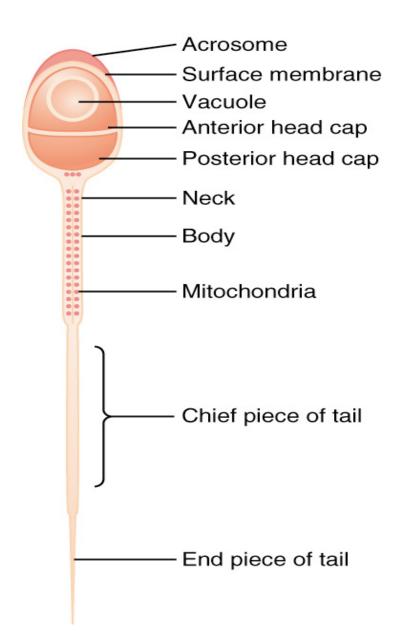
- 1. Testosterone --> secreted by Leydig cells → growth and division of the testicular germinal cells
- 2. Luteinizing hormone (LH)→ stimulates the Leydig cells to secrete **testosterone**.
- 3. Follicle-stimulating hormone (FSH--> stimulates the process of spermiogenesis
- GnRH→ stimulates anterior pituitary gland to produce luteinizing hormone (LH) and follicle stimulating hormone (FSH)
- 4. Estrogens → formed from **testosterone** by the Sertoli cells when stimulated by FSH→probably also essential for spermiogenesis.
- 5. Growth hormone (as well as most of the other body hormones) → controlling metabolic functions of the testes.
- Growth hormone → promotes early division of the spermatogonia

Dwarfs→ spermatogenesis is severely deficient or absent, thus causing infertility.



## Structure of the Human Spermatozoon

Sperm: designed to reach and penetrate the secondary oocyte in order to achieve **fertilization** and create a zygote.


head → contains condensed nucleus with 23 chromosomes+ thin cytoplasm.

Acrosome → covers the head and contains enzymes (hyauronidases & proteolytic enzymes) to help with penetration.

Tail= flagellum →3 parts

- (1) central → microtubules = axoneme
- (2) thin cell membrane covering the axoneme
- **(3)** mitochondria → ATP for locomotion

The principal piece and end piece make up the tail used for movement (velocity 1-4 mm/min)



# Maturation of Sperms

- Seminiferous tubules  $\rightarrow$  tubule of the epididymis
- Sperms at early portions of epididymis  $\rightarrow$  nonmotile & cannot fertilize an ovum.
- After 18-24 hours presence in epididymis → sperms develop capability of motility, even though **several inhibitory proteins** in the epididymal fluid still prevent final motility until after ejaculation.

The Sertoli cells and the epithelium of the epididymis → secrete a special nutrient fluid that is ejaculated along with the sperm.

#### **fluid contains:**

hormones (testosterone and estrogens), enzymes other nutrients that are essential for sperm maturation.

Stored at epididymis (mainly) & vas deferens for 1 month in depressed state)
Frequent ejaculation → few days storage

After ejaculation  $\rightarrow$  maturation of sperm  $\rightarrow$  become motile and capable of fertilizing the ovum

### **Maturation of Sperms**

Capacitation: A process to render the sperms competent to fertilize the ovum/ hypermotile.

- Occurs when sperm is expelled coming in contact with the fluids of the female genital
- Normally requires from 1 to 10 hours.

### **Changes leading Capacitation of Spermatozoa**

- ➤ various inhibitory factors that suppress sperm activity → washed by uterine and fallopian tube fluids
- Loss of cholesterol vesicles (tough & prevent enzymatic release) at acrosome of sperm
- ➤ Increase permeability of flagella to Ca ions cause increase in motility
- Ca ions enhances the release of enzymes by the acrosome enhancing the penetration of ovum

### **Seminal Vesicles**

60% of total semen.

#### **Functions of seminal fluid-**

Nutrition to sperms → Fructose

Other subestances: citric acid, PG

#### Clotting of semen

Immediately after ejaculation  $\rightarrow$  clotting of semen  $\rightarrow$  conversion of fibrinogen into fibrin.

#### Fertilization

**Prostaglandin** →enhances fertilization of ovum by:

- 1. Increasing the **receptive capacity** of cervical mucosa for sperms
- 2. Initiating reverse **peristaltic movement** of uterus and fallopian tubes → increasing rate of semen transport (oxytocin is also responsible for this process).

#### **Prostate Gland**

- 30% of total semen.

#### Functions of prostatic fluid-Ca, citrate, phosphate

#### Maintenance of sperm motility

pH<6 →NON-MOTILE SPERM

Vas deference & female genital tract are acidic.

Prostatic fluid provides optimum pH for the motility of sperms.

#### Clotting of semen

clotting enzymes present in prostatic fluid > convert fibrinogen (from seminal vesicles) into coagulum--> holding the sperms in uterine cervix.

#### Lysis of coagulum

The coagulum is dissolved by **fibrinolysin** of prostatic fluid (15-30 min after ejaculation), so that the sperms **become motile**.

prostate-specific antigen (PSA)→ hydrolyse sperm motility inhibitors.

### **Bulbourethral (Cowper's) glands**

secrete an alkaline fluid during sexual arousal that neutralizes acids from urine and mucus for lubrication

### Semen:

```
Contains fluids from seminal vesicles, prostate, vas deference and mucus
         glands, such as bulbourethral gland
Milky fluid
fructose, vit B, C, E, electrolytes: Na,K, Mg,Ca,
         Cl, HPO3
        LMW polypeptides, proteins
pH = 7.5 \text{ final}
Each ejaculation contains approximately 2-6 ml,
35-200 sperm, avg 120 m/ml, Avg 400 million/ejaculation
         (< 20 million = infertile)
Reach fallopian tube 30-60 min
```

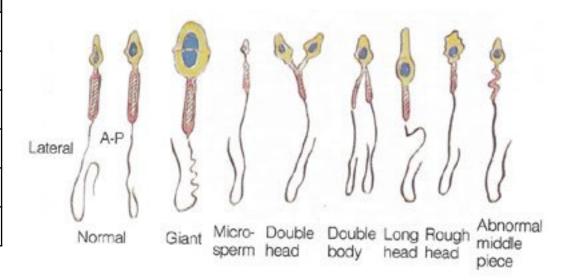
## Factors affecting sperm activity

medium at velocities of 1 to 4 mm/min.

Factors affecting activity of sperm:

1-neutral and slightly alkaline medium→ increase activity depressed in mildly acidic medium.

strong acidic medium → death


2- temperature → activity increases with increasing T
Optimum 2°C below the internal temperature.
On cold days→scrotal reflexes→ pulling the testes close to the body
Warm days→scrotum descend
excessive temperature -> degeneration of cells of seminiferous tubules

#### <u>3-rate of metabolism</u> → Proportional

the life expectancy of ejaculated sperm in the female genital tract is only 1 to 2 days.

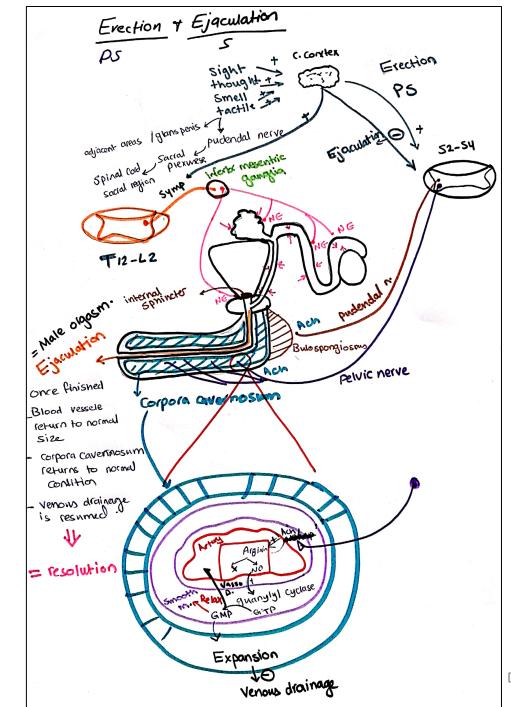
## Qualities of semen required for fertility

|                               | Minimum required |
|-------------------------------|------------------|
| Volume                        | 2 mL             |
| Sperm count                   | 20 million/mL    |
| Number of sperms /ejaculation | 40 million       |
| Alive sperms                  | 75%              |
| Motile sperms                 | 50%              |
| normal shape and structure    | 30%              |

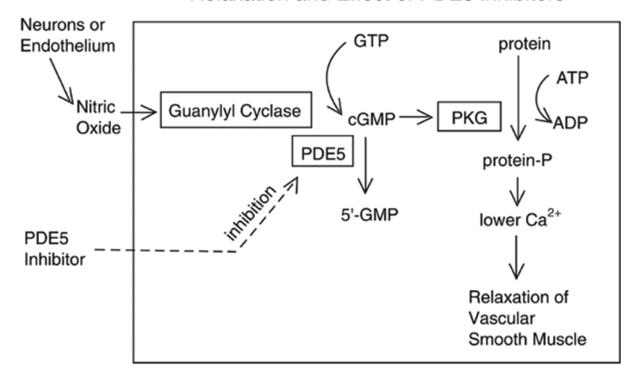


#### **Abnormal Spermatogenesis and Male Fertility**

**Mumps**→bilateral orchitis (inflammation) of the testes resulting from mumps → sterility


#### **Cryptorchidism**

congenital disorder ->failure of one or both the testes to descent from abdomen into scrotum.


=undescended testes--> prone for testicular cancer.

#### Treatment

testosterone or gonadotropic hormones (which stimulate Leydig cells) causes descent of testes, Surgery



#### Regulation of Smooth Muscle Relaxation and Effect of PDE5 inhibitors



## Male sexual response

```
    Erection: controlled by parasympathetic nervous system
    Incr. Parasympathetic and dec. sympathetic
    activity to penile arterioles = vasodilation of the
        arterioles and erection
    Parasympathetic postganglionic fibers release Ach
        -- muscarinic receptors on endothelium --
        produce NO -- also released by nerve terminals
        -- veins are compressed causing reduction in venous
            return
    -- pressure in corpus cavernosum higher than blood pressure
    -- NO → PKG → dec Ca++ → relaxation
```

# Male sexual response

Emission: movement of ejaculate into proximal part of urethra under sympathetic control -- causes sequential peristaltic contraction of smooth muscle of vas deferens -- closing of bladder sphincter

Ejaculation: spinal reflex -- triggered by entry of semen into urethra causes nerve impulses to activate perineal muscles -- forcibly expel semen from urethra

Orgasm: culmination of sexual excitation

Detumescence: (flaccidity) NE from sympathetics, endothelin = contraction of smooth muscle and inc venous outflow

# The end