Female Physiology Before Pregnancy and Female Hormones-I

Unit XIV

Chapter 82

Dr Iman Aolymat

Dr Iman Aolymat

Physiological anatomy of the female sexual organs

Primary sex organs

- production of 2nd oocytes

(Redrawn from Guyton AC: Physiology of the Human Body, 6th ed. Philadelphia: Saunders College Publishing, 1984.)

Physiological anatomy of the female sexual organs

Accessory sex organs

- > Uterine/Fallopian tubes transport fertilized ova
- Uterus where fetal development occurs
- Cervix (mucus secretion), Vagina
- \succ external genitalia constitute the vulva (L. majora, minora & clitoris)

(Redrawn from Guyton AC: Physiology of the Human Body, 6th ed. Philadelphia: Saunders College Publishing, 1984.)

Sexual life in females

FIRST PERIOD

- Birth-puberty
- primary and accessory sex organs do not function

SECOND PERIOD

- puberty -menopause
- First menstrual cycle = menarche
- Permanent stoppage of menstrual cycle=menopause (45 -50y).
- women menstruate and reproduce.

THIRD PERIOD

• Menopause-rest of life.

Oogenesis and follicular development in the ovaries

Intrauterine life

- \succ germinal ridges \rightarrow germinal epithelium (cortex of $ovary) \rightarrow primordial ova/oogonia$
- Oogonia divide to produce millions by mitosis but most degenerate (atresia) during fetal growth
- Some develop into primary oocytes & stop in prophase stage of meiosis I
- 2 million present at birth
- \geq 300, 000 remain at puberty but only 400- 500 mature during a woman's life
- Each month, hormones cause meiosis I to resume in several follicles so that meiosis II is reached by ovulation
- Penetration by the sperm causes the final stages of meiosis to occur

Dr Iman Aolsurrounded by endocrine cells

Fundamental reproductive unit = single ovarian follicle=one germ cell (oocyte)+

Monthly ovarian cycle; function of the gonadotropic hormones

female monthly sexual cycle /menstrual cycle= monthly rhythmical changes in:

 \checkmark rates of secretion of the female hormones

 \checkmark ovaries and other sexual organs.

Avg 28 d (20-45 d) Abnormal cycle length→decreased fertility

Outcomes of female sexual cycles:

1-single ovum/month→ fetus?
2-prepared uterus for implantation

Monthly ovarian cycle; function of the gonadotropic hormones

- >Ovarian function is completely dependent on FSH & LH
- \geq 9 to 12 years \rightarrow pituitary begins to secrete progressively more FSH and LH \rightarrow onset of monthly sexual cycles \rightarrow beginning between the ages of 11 and 15 years (puberty)
- > FSH & LH \rightarrow activate receptors in ovarian target cell \rightarrow increase cells' rates of secretion+growth and proliferation of cells

 \succ activation of cAMP \rightarrow formation of protein kinases \rightarrow phosphorylations enzymes \rightarrow stimulate sex hormone synthesis

Synthesis of estrogen by ovarian cells during menstrual cycle

Thecal cells – superficial no aromatase have only LH Receptors can get cholesterol from LDL in blood

Female monthly sexual cycle

Ovarian cycle—

follicular phase -- avg 15 d (range, 9-23 days) ovulatory phase -- 1-3 d -- culminates with ovulation luteal phase – 13 d -- less variable than follicular

secretory phases

Endometrial cycle -- menstruation, proliferative and

Female monthly sexual cycle

Figure 82-5. Stages of follicular growth in the ovary, also showing formation of the corpus luteum.

3 FSH & LH → increase slightly to moderately increase in FSH slightly greater than that of LH and preceding it by a few days. These hormones(especially FSH) → cause accelerated growth of 6-12 primary follicles/month The initial effect is rapid proliferation of the granulosa cells → many more layers
Formation of theca cells

FSH→granulosa cells→ secretes a follicular fluid containing high concentration of estrogen

Figure 82-5. Stages of follicular growth in the ovary, also showing formation of the corpus luteum.

. .

Dr Iman Aolymat

accelerated growth is caused by:

1. <u>Estrogen</u> is secreted into follicle and causes the <u>granulosa</u> cells to form increasing numbers of FSH Receptors \rightarrow positive feedback effect (makes the granulosa cells even more sensitive to FSH (intrinsic +ve FB)

2. FSH & estrogens combine to promote **LH receptors** on **granulosa** cells, thus allowing LH stimulation to occur in addition to FSH stimulation and creating an even more rapid increase in **follicular secretion**.

3. The increasing estrogens from follicle $+\uparrow$ LH act together to cause proliferation of the follicular **thecal** cells and increase their **secretion** as well.

Figure 82-5. Stages of follicular growth in the ovary, also showing formation of the corpus luteum.

Only **One** Follicle Fully Matures (**outgrow** all the others) Each Month, and the Remainder Undergo Atresia \rightarrow 1 fetus/preg

cause \rightarrow large amounts of estrogen from the most rapidly growing follicle \rightarrow hypothalamus \rightarrow inhibit FSH \rightarrow blocking further growth of the less well-developed follicles.

the largest follicle continues to grow because of its intrinsic positive

The single follicle reaches a diameter of 1-1.5 centimeters at the time of ovulation and is called the **mature follicle**.

In the uterus (proliferative phase)

increasing estrogen levels re-epithelialize endometrial surface within 4 to 7 days after the beginning of menstruation

After that \rightarrow increase numbers of stromal cells & progressive growth of the endometrial glands and new blood vessels

Dr Iman Aolymat

Figure 82-5. Stages of follicular growth in the ovary, also showing formation of the corpus luteum.

<u>6-Ovulation</u>

In 28-day cycle \rightarrow ovulation 14 days after onset of menstruation small area in the center of the follicular capsule (**stigma**) \rightarrow ruptures \rightarrow ovum surrounded by a granulosa cells \rightarrow called the corona radiata

Estradiol (pg/mL)

Ovulation

- A Surge of LH Is Necessary for Ovulation.
- **LH** is necessary for **final** <u>*follicular* growth</u> and ovulation.
- <u>2 days</u> before ovulation → rate of secretion of LH increases markedly, 6-10-fold, peaking 16h before ovulation.
- FSH also increases 2-3 fold at the same time
- FSH & LH act synergistically to cause rapid swelling of the follicle before ovulation.
- LH converts granulosa and theca cells to mainly progesterone secreting cells.
- rate of secretion of estrogen begins to fall about <u>1 day</u>
 <u>before ovulation</u>

Signs of Ovulation

- Increase in basal body temperature
- Changes in cervical mucus
- Cervix softens
- Mittelschmerz---pain

Postovulatory Phase

- lasts 14 days ullet
- In the ovary \rightarrow (luteal phase) lacksquare
 - LH \rightarrow luteinization \rightarrow granulosa & theca interna cells change rapidly into **lutein** cells \rightarrow filled with lipid \rightarrow c. $luteum \rightarrow P\&E \rightarrow low FSH\&LH$
 - Lutein cells \rightarrow inhibin \rightarrow inhibt FSH

Involution of CL

- No fertilization \rightarrow corpus albicans is formed
 - as hormone levels drop, secretion of GnRH, ٠ FSH & LH rise
- if fertilization did occur, developing embryo secretes human chorionic gonadotropin (hCG) which maintains health of corpus luteum & its hormone secretions

Theca

Figure 82-5. Stages of follicular growth in the ovary, also showing formation of the corpus luteum.

Postovulatory Phase

- In the uterus (secretory phase/progstational phase)
 - Hormones (progesterone mainly) from corpus luteum promote marked swelling and secretory development of endometrium \rightarrow provide appropriate conditions for implantation of a fertilized ovum

 $Glands \rightarrow$ increase in tortuosity excess of secretory substances accumulates in the glandular epithelial cells

stromal cells \rightarrow **Cytoplasm** increases lipid and glycogen depositsiton

Increase blood supply to the endometrium \rightarrow blood vessels becoming highly tortuous.

"uterine milk," provide nutrition for the early dividing ovum

if no fertilization occurs, menstrual phase will begin

Menstrual Phase

- Menstruation lasts for 5 days
- First day is considered beginning of 28 day cycle
- In ovary
 - Early follicular growth
- In uterus
 - declining levels of progesterone (mainly) & estrogen
 - caused spiral arteries to constrict ischemia & necrosis \rightarrow glandular tissue dies
 - stratum functionalis layer is sloughed off along with 40 ml of blood, 35 ml serous fluid
 - The menstrual fluid is **nonclotting** \rightarrow because a fibrinolysin is released along with the necrotic endometrial material. excessive bleeding \rightarrow not enough fibrinolysin \rightarrow clotting
 - Within 4 to 7 days after menstruation starts, the loss of blood ceases because, by this time, the endometrium has become re-epithelialized.

The end

Dr Iman Aolymat

21