

Canadian Undergraduate Urology Curriculum (CanUUC): Hematuria

Objectives:

- 1 Define microscopic and macrosopic (gross) hematuria
- 2 Outline the investigations required (upper and lower urinary tract) when evaluating hematuria.
- 3 Describe the common causes of hematuria.
- 4 List the common risk factors for urothelial malignancy.
- 5 Outline the evaluation of a renal mass.
- 6 List how hematuria of nephrologic origin differs from hematuria due to a urologic source

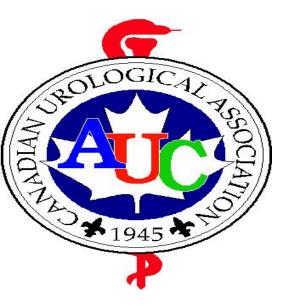
What is hematuria?

GROSS HEMATURIA

- Visible blood in the urine
- This is always significant!

→ MICROSCOPIC HEMATURIA

- Greater than 2-3 RBC/HPF on two microscopic analysis
- Absence of recent menses, exercise, or instrumentation


Hematuria: Why Care?

- Should be regarded as a symptom of urologic malignancy until proven otherwise
- → 1-16% prevalence in the population
- → Hematuria carries a 5-10 fold risk of urologic malignancy

Outline

- 1. 28 year old male with gross hematuria
- 2. 49 year old female with microscopic hematuria
- 3. 67 year old male with gross hematuria and clot retention

Case 1

"Something's wrong down there..."

A 28 year old male

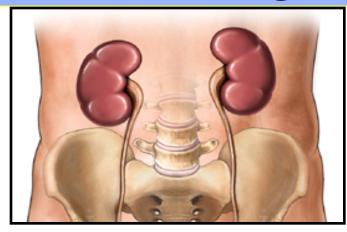
- ⇒ 2 episodes of gross hematuria
 - Self-limiting
- - Urinary hesistancy
 - Decreased in the force of stream
- → Non-Smoker
- → No pain, No Trauma

Does this patient need evaluation?

- ⇒ YES!
- Gross hematuria carries a fivefold yield of representing significant underlying pathology
- Needs evaluation regardless of age

Key Points on History

- → Pain with hematuria usually from upper tracts
 - Usually represents a stone or infection
- → Painless hematuria usually more worrisome
- ⇒ Presence of clots
 - Usually indicates more significant hematuria

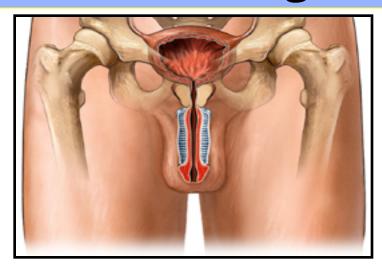


What investigations are required?

- → Urinalysis, urine C&S, lytes, Cr
 - R/O infection, renal failure
- □ Urine cytology
- **□** UPPER TRACT STUDY
 - Imaging
- **→ LOWER TRACT STUDY**
 - Cystoscopy

Upper tract investigations

□ Ultrasound


- Very useful first line imaging of upper tracts
- Assess for mass, calculus, hydronephrosis

→ Computerized tomography (CT)

For evaluation of any abnormalities on ultrasound

Lower tract investigations

- Radiographic studies <u>do not rule out</u>
 lower urinary tract pathology
- ⇒ Cystoscopy is the gold standard for evaluating the lower urinary tract

Other Tests: Urine cytology and markers

Urine cytology

- Sensitivity 34%, specificity 81%
- Greatest sensitivity in high grade urothelial tumors

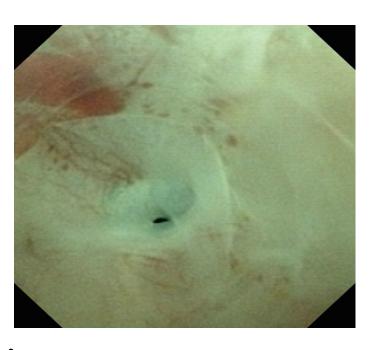
Bladder tumor marker tests

- More sensitive than cytology but less specific
- Possibly a role in followup of bladder tumors

Urologic causes of hematuria

→ Upper tract

- Renal cell carcinoma
- Renal calculi
- Obstruction/Hydronephrosis


⇒ Lower tract

- Bladder cancer
- BPH
- Urethral Stricture

Case 1: Results

- → Urinalysis, urine culture
 - □ 1-5 WBC, 5-10 RBC
 - No growth
 - Neg STI's
- → Renal Ultrasound
 - Normal upper tracts
- - Narrow bulbar urethral stricture
 - Stricture dilated sequentially

Case 1: Continued

- Hematuria and LUTS improved after cystoscopy and dilation
- Symptoms recurred in 6 months
- → Urinary retention
- Repeat cystoscopy with urethrogram
 - 5cm bulbar urethral stricture

Urethral Stricture

- ⇒ Fibrosis of urethra and corpus spongiosum causing:
 - LUTS/retention

 - Hematuria
- ⇒ Etiology
 - Trauma
 - Idiopathic
 - Infection
 - Iatrogenic

Urethral Stricture: Treatment

- → Dilations, urethrotomy:
 - Forcibly opening strictured segment
 - Not usually curative
 - Temporary relief
- → Urethral reconstruction
 - >90% success
 - Tissue transfer (buccal mucosa)

Case 2

"An incidental finding..."

A 49 year old female

- → Routine insurance urinalysis
 - Dipstick: 1+ Hgb
 - Microscopic: 5 RBC/HPF
- → Negative urine C&S, N Cr (65)
- → No Gross Hematuria
- → Non-Smoker
- No LUTS and no pain

Does this patient need investigation?

- ⇒ Yes!
- → Age >40 with microscopic hematuria

Microscopic Hematuria: Who to investigate?

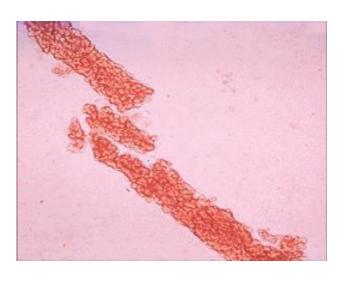
- → Patients <u>over the age of 40</u> need full urologic evaluation
 - Yield 11%
- Complete investigation NOT needed for microscopic hematuria in a nonsmoker (and no other risk factors) less than 40 years of age
- Upper tract imaging reasonable in all patients
- Cystoscopy can be deferred in patients under 40 without risk factors for lower tract pathology

When do people under 40 with microscopic hematuria require full cystoscopy?

- → People with risk factors for lower tract malignancy:
 - 1 Smokers
- 2 Occupational exposure to dyes
- 3 Radiation therapy to pelvis
- 4 Cyclophosphamide exposure
- 5 Analgesic abuse with phenacetin

Does a positive dip always indicate hematuria?

- \Rightarrow No
- - Dehydration
 - Myoglobinuria
 - Menstrual blood contamination
 - Oxidizing agents (Vitamin C, etc.)


Hematuria: Is Urine Dipstick Accurate?

- **Sensitivity 0.91 Sensitivity 0.91**
- ⇒ Specificity 0.99
- → False positive 16% therefore confirm with microscopic exam of urine sediment
- → Good for screening

When to suspect a nephrologic (glomerular) source?

- l. RBC casts
- 2. Proteinuria
- 3. Dysmorphic red blood cells
- 4. Elevated creatinine

If these are present there may be no need to investigate for urologic source

Case 2: Investigations

- <u>Upper tract</u>
 - 4cm left renal mass on ultrasound
 - No calculi or hydronephrosis

- - Normal cystoscopy
 - Normal cytology

Further evaluation: CT abdomen

- → 4cm central left renal mass
- → Differential Diagnosis:
 - RENAL CELL CARCINOMA
 - Oncocytoma
 - Angiomyolipoma
 - Lyphoma
- → A solid renal mass is considered carcinoma unless proven otherwise!

Renal Cell Carcinoma

- ⇒ 3% of all adult malignancies
- → 90% of malignant renal tumours
- \rightarrow Males:females = 2:1
- → Risk factors:
 - Smoking (mild)
 - von Hippel Lindau (VHL) syndrome
 - "Bad luck"

Renal Cell Carcinoma: Presentation

- → Age 40-60
- ~60% are incidentally discovered (ultrasound, etc)
- → Hematuria
- → 15% have "classic triad" of flank pain, abdominal mass, & hematuria
- → Paraneoplastic syndromes
 - Hypercalcemia, Cushing's, etc.

Renal Cell Carcinoma: Diagnosis

- → Based on radiographic studies
 - Incidental ultrasound
 - Best imaging modality: Abdominal CT
 - Generally do not do biopsy

Renal Cell Carcinoma: Treatment

- Nephrectomy (is the only cure)
- Radical vs. Partial (small or bilateral tumours)
- Radiotherapy not beneficial
- Chemotherapy ineffective

→ Metastases:

- Palliative radiotherapy (bony lesions)
- Tyrosine kinase inhibitors (TKI's)

Case 3

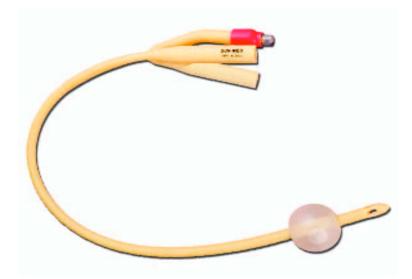
"Those damn cigars..."

A 67 year old male

- → Gross hematuria for 2 weeks
- → Passing clots per urethra for 2 days
- Unable to void for 8 hours
- → Smoker x 30 years
- □ Urinalysis: 4+ Hgb, >50 RBC/HPF

Does this patient need investigation?

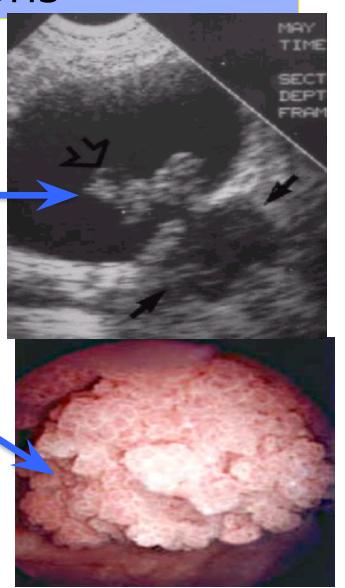
- → Yes! Definitely
- Gross hematuria
- → Smoker


Treatment plan

- → Needs catheter (large)
- → Upper tract imaging
 - Renal ultrasound
- - Cystoscopy
- □ Urine Cytology

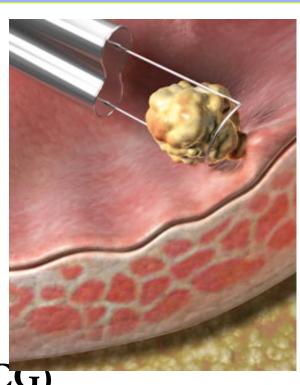
Clot Retention

- Bladderhemorrhage andlarge clots
- Place large bore 3way catheter
- Manually irrigate clots
- → Continuous bladder irrigation (CBI)



Case 3 Investigations

- Renal ultrasound
 - Normal kidneys
 - Possible bladder lesion
- □ Urine Cytology
 - "Atypical cells"
- ⇒ Cystoscopy
 - Papillary bladder tumour


Bladder cancer: Urothelial Carcinoma (Transitional Cell Carcinoma)

- Most common cause of gross hematuria over age 40
- \rightarrow Male: Female (3:1)
- → Most common type of bladder tumour (>85% tumours)
- Radiologic investigations have a <u>high</u> false negative rate
- ⇒ Cystoscopic ("visual") diagnosis

TCC: Treatment

- **→** TURBT
 - Stages the cancer
 - Treatment for early stage cancers
- → Prone to recurrence
 - Cystoscopic surveillence
- → Higher stage lesions
 - Intravesical immunotherapy (i.e. BCG)
 - Radical cystectomy
 - Combined chemoradiotherapy

Transurethral Resection of Bladder Tumour (TURBT)

Bladder Tumor Before TURBT Surgery

When to re-evaluate hematuria

- The likelihood of tumors developing within 2 to 5 years after a negative evaluation is in the 0 to 3% range
- Cytology, urinalysis and blood pressure checks at 6m, 12m, 24m and 36m after negative evaluation
- → Re-evaluate if:
 - Gross hematuria
 - Positive or atypical urine cytology
 - New onset of irritative voiding symptoms without infection