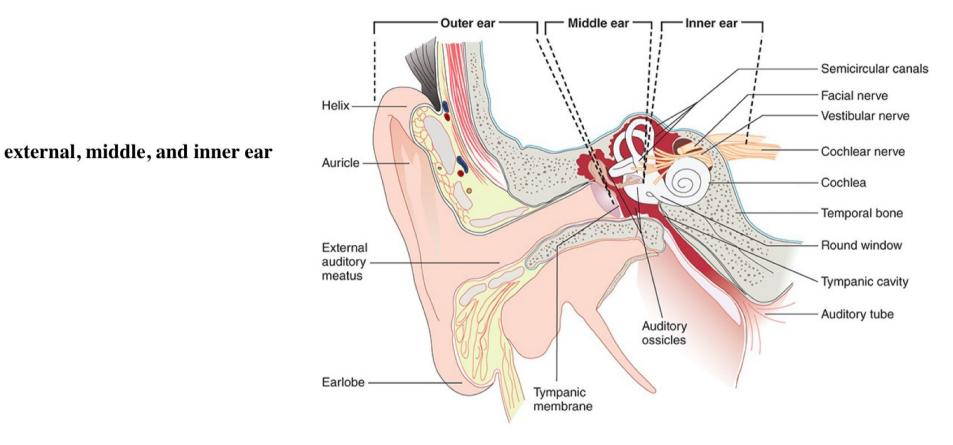
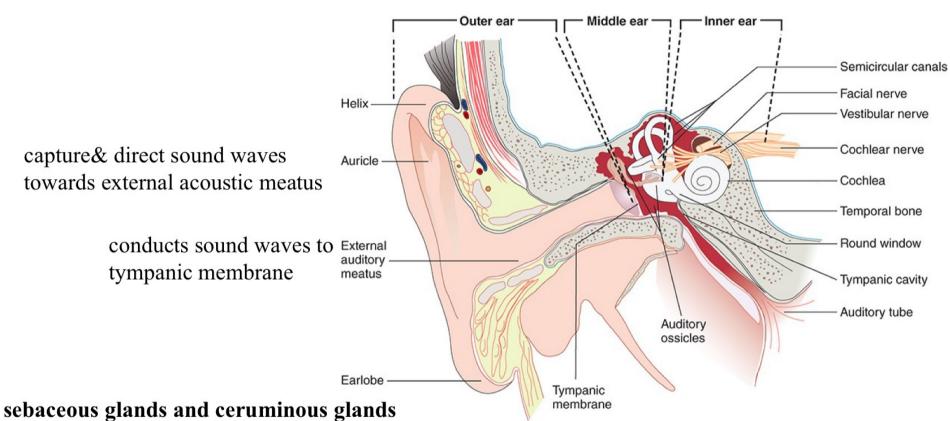
Lectures 6 The Sense of Hearing

Chapter 53

Audition

- Sound =waves of compression (increase in pressure) and decompression (decrease in pressure)
- No vacuum transmission
- Highest speed-solid
- Loudness or intensity
- depends upon amplitude of sound waves.
- units for expressing sound amplitude/ loudness/ intensity are decibels (dB)
- dB = 20 log P/P₀
- dB = Decibel
- P = Sound pressure being measured
- $P_{0=}$ Reference pressure measured
- A reference, 0 dB, is the average threshold for hearing at 1000 Hz.


question


- if a sound pressure is 10 times the reference pressure, calculate the intensity?
- $dB = 20 \log P/P0$
- $dB = 20 \log 10$
- $dB = 20 \times 1 = 20$

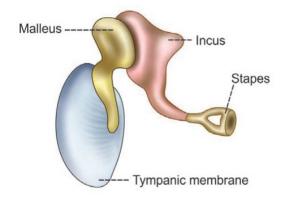
Audition

- Sound frequency (pitch/tone) is measured in cycles/second or hertz (Hz).
- Human ear is sensitive frequencies between 20 and 20,000 Hz and is most sensitive between 2000 and 5000 Hz.
- The usual range of frequencies in human speech is between 300 and 3500 Hzsound intensity is about 65 dB.
- Sound intensities > 100 dB can damage the auditory apparatus
- >120 dB can cause pain.

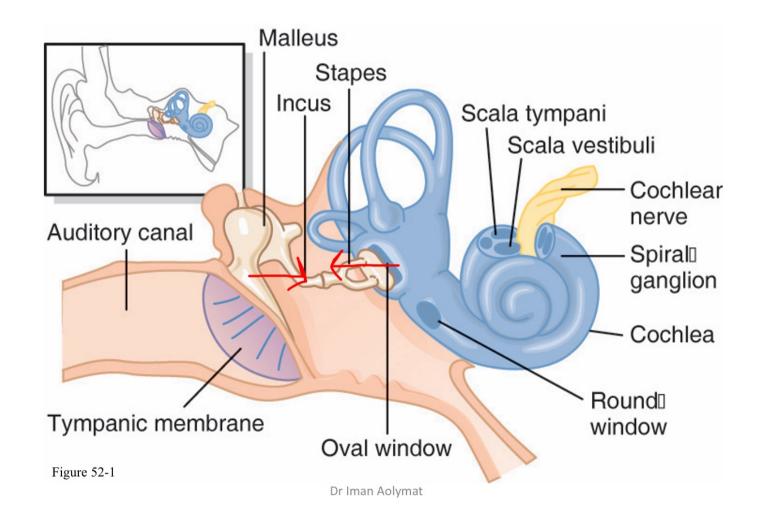
External Ear

secrete brown pigment granules and fat droplets.

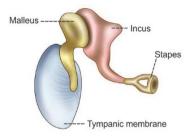
Secretions of ceruminous & sebaceous glands and desquamated epithelial cells form the earwax.


Middle Ear-Tympanic Membrane & Ossicular System

• tympanic membrane:


- \checkmark transmit vibrations in the air to the cochlea through ossicles
- ✓ kept tensed by **tensor tympani muscle**
- tympanic membrane connected to the ossicles
 - malleus
 - incus
 - Stapes

ossicles are combined as a single lever by ligaments

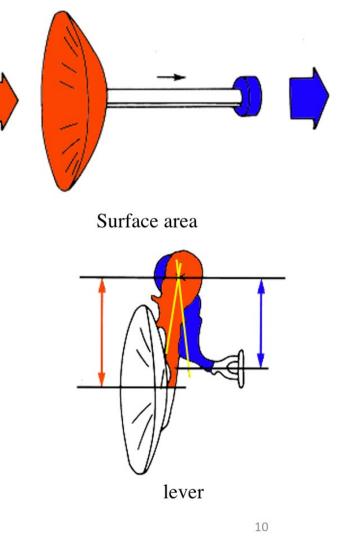

articulation of incus with stapes pushes cochlear fluid forward and backward on TM movement

Components of the auditory system

Attenuation of Sound by Muscle Contraction

- a loud noise initiates **tympanic reflex** (after 40 80 ms)→ contraction of:
 - tensor tympani-mandibular nerve \rightarrow pulls the handle of the malleus **inward**)
 - Stapedius-facial nerve→ pulls the stapes **outward**)

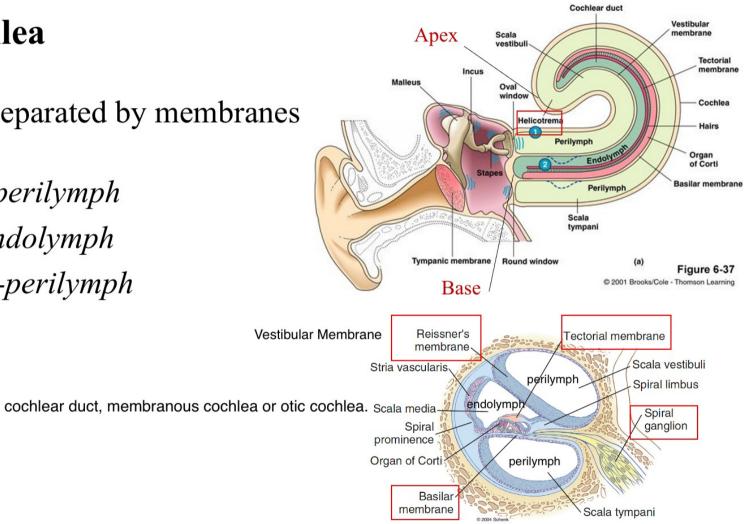
attenuates vibration going to cochlea.


 serves to protect cochlea and damps low frequency sounds i.e., your own voice.

Impedance Matching

- Impedance= opposition to passage of sound waves- perilymph in cochlea offers impedance to sound waves due to its own inertia.
- Impedance matching is the process by which TM and the auditory ossicles are capable of converting sound energy into mechanical vibrations in cochlear fluid with minimum loss of energy/intensity

- Surface area of TM (55 sq mm)>footplate of stapes (3.2 sq mm)→amplifies the signal because the area of the tympanic membrane is 17 times larger than the oval window.
- ossicles act like a lever system \rightarrow amplifies the signal $1.5X \rightarrow$ vibrations



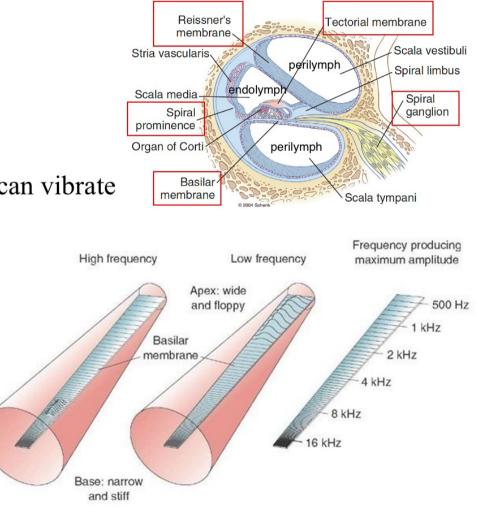
Middle Ear-Tympanic Membrane & Ossicular System

- Eustachian tube middle ear with nose to nasopharynx
- Equalize pressure on both sides of tympanic membrane
- Usually closed
- Opens with jaw movement & ascend
- Descends
- Cilia-drainage
- Shorter, wider & more strait in children \rightarrow OM

Inner ear - Cochlea

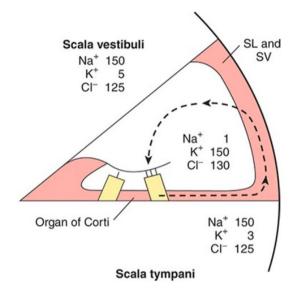
- three coiled tubes separated by membranes into:
 - ✓ scala tympani-perilymph
 - ✓ scala media-endolymph
 - ✓ scala vestibuli-perilymph

Basilar Membrane


• contains about 20,000-30,000 basilar fibers

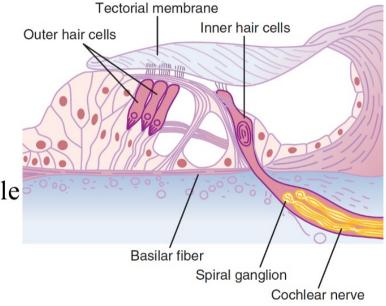
Characteristics of basilar fibers

- different size and shape
- fixed to modiolus and free at one end \rightarrow they can vibrate


•Elastic

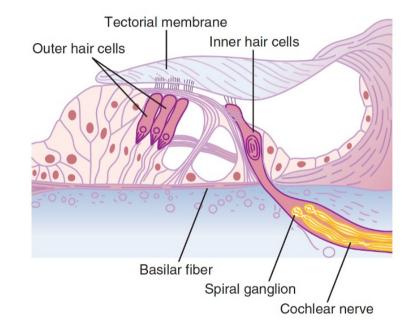
```
near base→ short, thick & stiff→ high freq. sounds
near apex→ long, thin & soft→ low freq. sounds
```


Perilymph & Endolymph


- perilymph → scala vestibuli & scala tympani (high Na low K)
- Endolymph→ scala media similar to CSF (high K low Na)→ generated by continual secretion of K into the scala media by stria vascularis

Organ of Corti

receptor organ


- on the surface of the basilar membrane
- contains rows of electromechanically sensitive cells with stereocilia called **hair cells**.
- 2 types of hair cells: outer 3 rows(12K) & inner-single row (3K).
- hair cells synapse with cochlear nerve endings.
- 90 -95% of cochlear nerve endings on **inner** hair cellsreceptors
- Outer: larger diameter-efferent-increases the amplitude and sharpness of sound Dr Iman Aolymat

Organ of Corti

•Gelatinous tectorial membrane lies above the stereocilia of the hair cells.

•movement of the basilar membrane causes the stereocilia of the hair cells to shear back and forth against the **tectorial membrane** \rightarrow generate nerve impulses

The end

Lectures 7 The Sense of Hearing

Chapter 53

Mechanism of hearing

- Transmission of sound
- Stimulation of receptors
- Central neurophysiology of hearing

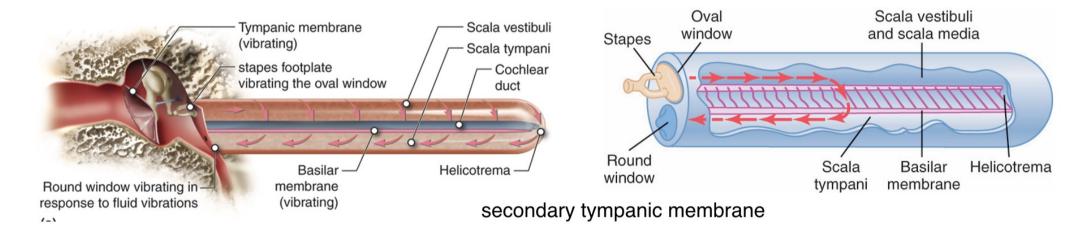
Transmission of sound

Types of sound conduction

1. Ossicular conduction

 \checkmark conduction of sound waves through middle ear by auditory ossicles

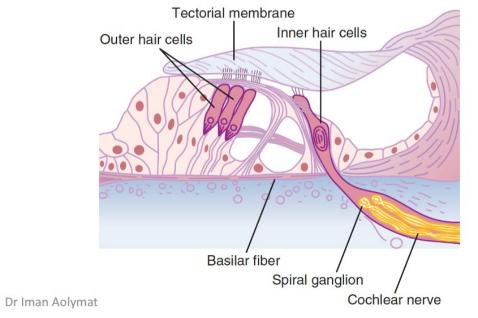
2. Air conduction


- ✓ ossicular system and TM absence (otosclerosis/OM) → sound waves travel through air
- ✓ sensitivity for hearing is 15-20 db < ossicular transmission → equivalent to decrease from medium to a barely perceptible voice level.

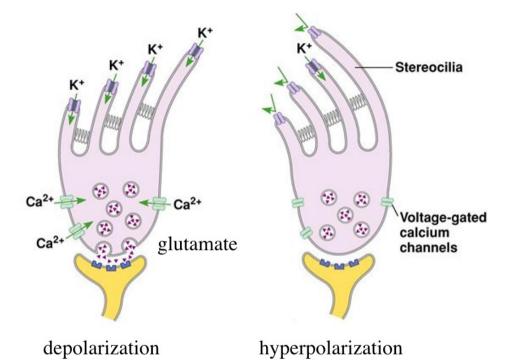
3. Bone conduction.

- ✓ sound waves are transmitted vibrations of skull \rightarrow fluid vibrations in cochlea.
- \checkmark tuning fork on mastoid process \rightarrow sound is heard

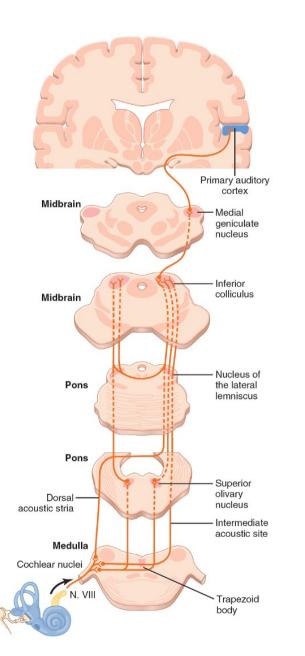
Transmission of sound waves in the cochlea -"traveling wave"


TM \rightarrow ossicles \rightarrow oval window/fenestra vestibuli \rightarrow scala vestibuli \rightarrow fluid wave toward helicotrema \rightarrow scala tympani \rightarrow basilar membrane bending \rightarrow round window

Auditory receptors stimulation


Nerve Impulse Origination

- auditory signals are transmitted by the inner hair cells.
- basilar membrane bending → bending of stereocilia of hair cells → depolarization/ hyperpolarizaton.

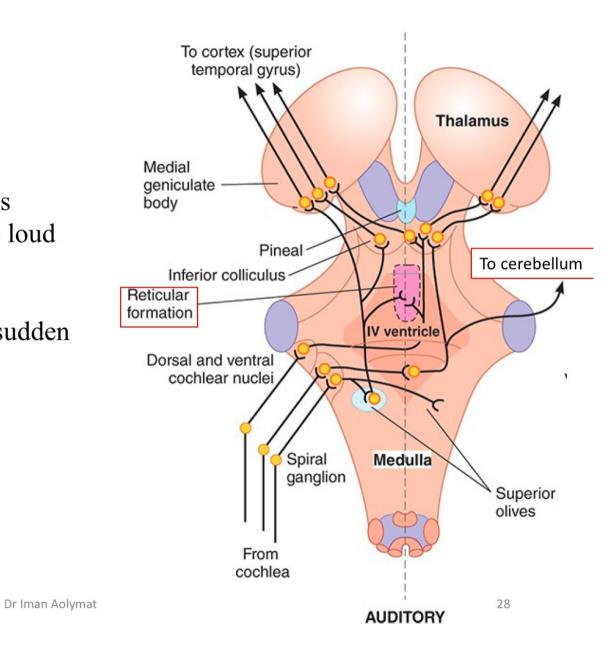


Hair Cell Receptor Potentials

- stereocilia become progressively longer on the side of the hair, and the tops of the shorter stereocilia are attached by thin filaments
- When a stereocilium is pushed toward a taller stereocilium (away from limbus), cation channels opens → K efflux → depolarization → Ca entry → NT release
- When a stereocilium is pushed away from a taller stereocilium→ cation channels close→ hyperpolarization
- Alternating hair cell receptor potential stimulates cochlear nerve endings

Central neurophysiology of hearing

Auditory Pathway

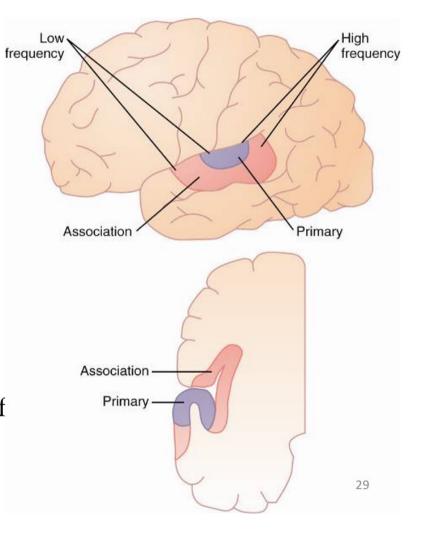

- Signals from both ears are transmitted through the pathways of **both** sides of brain, with **majority** of transmission in **contralateral** pathway.
- crossing over :
- 1-in the trapezoid body
- 2-commissure between two nuclei of lateral lemnisci3-commissure connecting two inferior colliculi

Central Auditory Pathway

collateral into

1- reticular activating system \rightarrow activates the entire nervous system in response to loud sounds.

2-vermis of cerebellum \rightarrow activated in sudden noise.

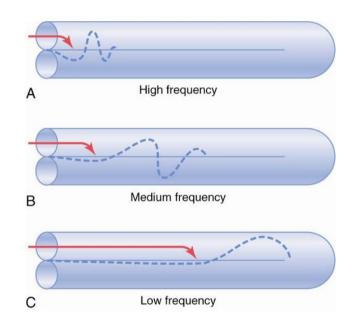

Auditory Cortex and Association Areas

primary auditory cortex

- area 41, area 42 and Wernicke area
- excited by \rightarrow medial geniculate body

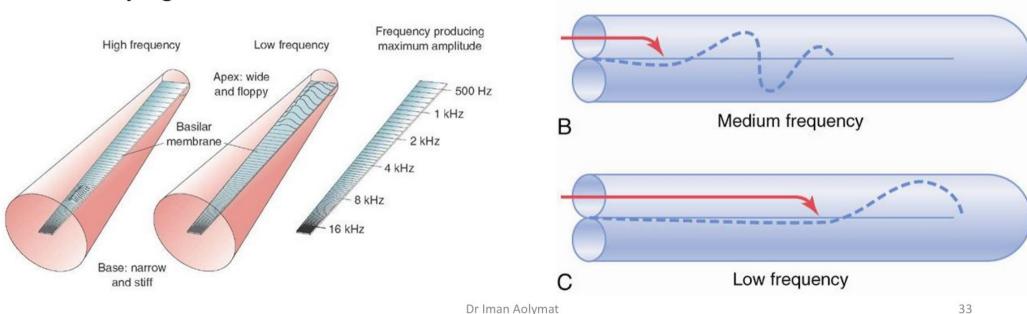
Secondary auditory area

- auditopsychic area/area 22
- excited by→ primary auditory cortex & thalamic association areas
- Areas 41 and 42→ Perception of auditory impulses only
- Wernicke & area 22→ analysis and interpretation of sound.


Applied physiology – effect of lesion

- Degeneration of hair cells leads to presbycusis (gradual loss of hearing). common in old age.
- Unilateral lesion of **auditory pathway**, above level of cochlear nuclei causes **diminished hearing**
- Lesion in superior olivary nucleus results in poor localization of sound.

Frequency discrimination


Resonance Point

- traveling wave → traveling through basilar membrane→ the wave becomes stronger→ and at one point (resonance point)→ it becomes very strong → vibration of basilar membrane → The traveling wave stops immediately and does not travel further
- high-frequency sound wave travels a short distance before it reaches its resonant point and dies
- **medium-frequency** sound wave travels about halfway and then dies
- **very low frequency** sound wave travels the entire distance along the membrane.

The "Place Principle"

sound frequencies are discriminated from one another is based on the "**place**" of maximum stimulation of the nerve fibers from the organ of Corti lying on the basilar membrane

A

High frequency

Determination of Amplitude/loudness

- Number of stimulated hair cells on the resonating points (more nerve fibers)
- Frequency of AP generated by receptors stimulation

Determination of Amplitude/loudness

- outer hair cells may control the sensitivity of the inner hair cells for different sound pitches (tuning).
- there are nerve fibers running from brain stem to the vicinity of the outer hair cells, may function to adjust sensitivity by acting on these cells
- Inhibitory signals from superior olivary nucleus to hair cells→reducing their sound sensitivities →attention to sounds of particular qualities

- Damage to outer hair cells: hearing loss.

Determining the Direction of Sound

- superior olivary nucleus divided into lateral and medial nuclei.
- lateral nuclei → detects direction by the difference in sound intensities between the 2 ears.
- medial nuclei → detects direction by the time lag between acoustic signals entering the ears.

Deafness

- nerve deafness
 - impairment of the cochlea or the auditory nerve
- conduction deafness
 - impairment of tympanic membrane or ossicles

The end