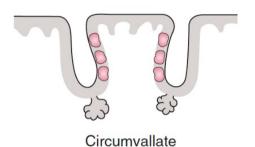
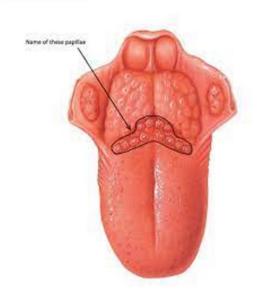
Taste/gustation


Taste

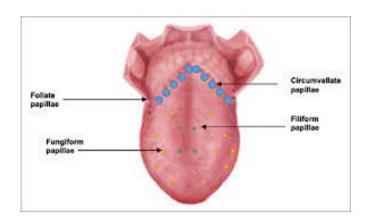

- chemical sense-chemoreceptors
- allows one to separate undesirable or lethal foods from those that are nutritious.

- Present on the papillae of tongue.
- In the mucosa of epiglottis, palate, pharynx and the proximal part of esophagus.
- adults have 3-10,000 buds.
- children have more.
- beyond age 45 taste buds start to degenerate taste becomes less critical.

Circumvallate Papillae

- ✓ large
- √ posterior part of tongue
- ✓ many in number.
- ✓ arranged in the shape of 'V'.
- ✓ Each papilla contains many taste buds (up to 100).

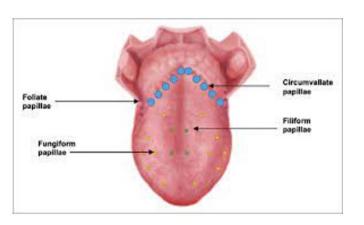
2. Fungiform Papillae


- ✓ round in shape
- ✓ over the anterior surface of tongue near the tip.
- ✓ moderate number of taste buds

3. Filiform Papillae

- ✓ small
- ✓ conical-shaped
- ✓ Dorsum of tongue
- ✓ Few numbers of taste buds

Fungiform

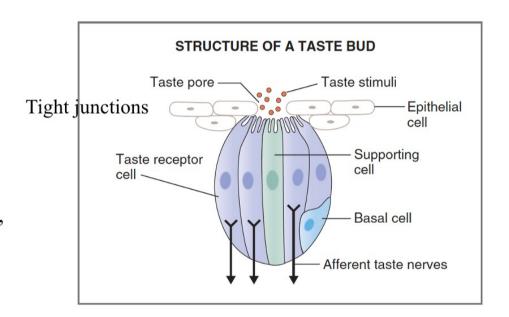


4. Foliate papillae

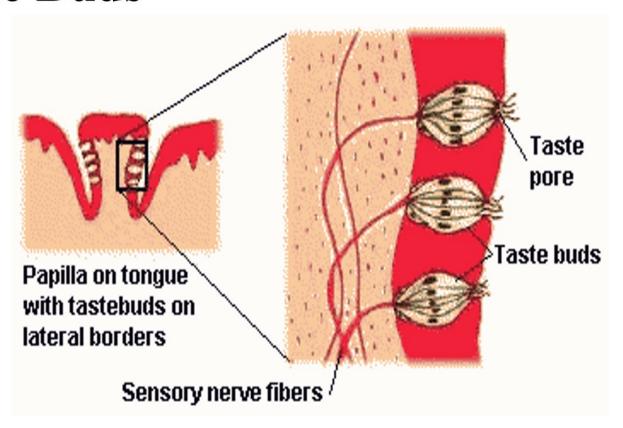
- ➤ Lateral surfaces of the tongue
- ➤ Moderate numbers of taste buds

Additional taste buds

Palate tonsillar pillars Epiglottis proximal esophagus.



STRUCTURE OF TASTE BUD

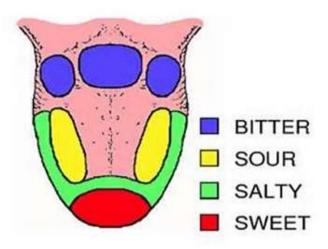

Type of Cells in Taste Bud

- Taste receptor cells (epithelial cells)-microvilli Taste pore
- Sustentacular cells--microvilli
- Basal cells

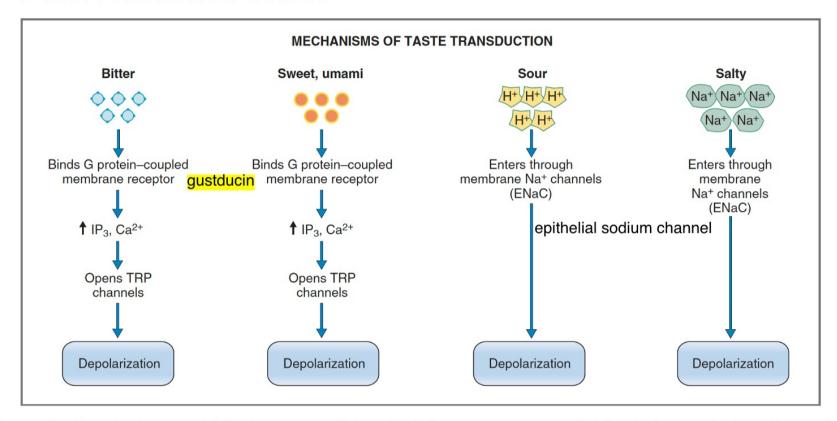
Cells of taste buds undergo constant cycle of growth, apoptosis and regeneration.

Taste Buds

Primary Sensation of Taste


- can perceive hundreds of different tastes
- all are various combinations of the five primary taste sensations
 - -sour
 - -salty
 - -sweet
 - -bitter
 - -umami
- similar to the perception of color

Taste Perception

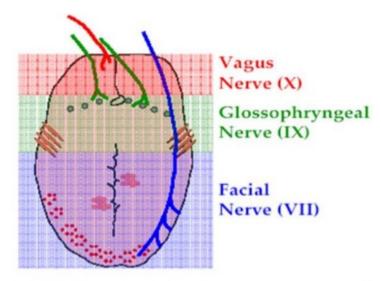

- sour
 - caused by acid concentration
- salty
 - caused by ionized salts
- sweet
 - many chemicals mostly organic compounds
- bitter
 - long chain organic substances containing nitrogen
 - alkaloids
- umami
 - glutamate

Taste Bud Facts

- sweet and salty buds located on the tip of the tongue.
- sour on the lateral sides of the tongue.
- bitter on the posterior tongue and soft palate.

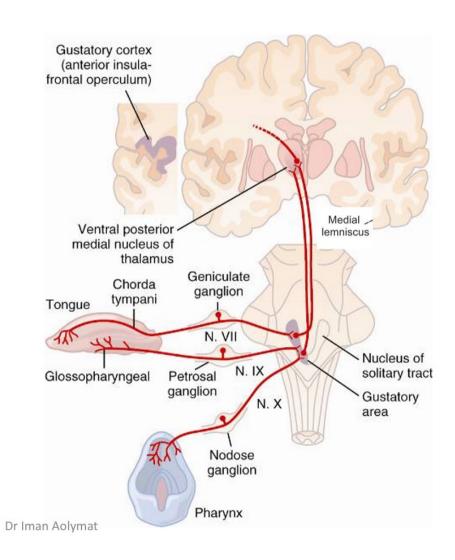
TASTE TRANSDUCTION

change in electrical potential in the taste cell is called the receptor potential \rightarrow AP in terminal endings of afferent nerve fibers


Primary modalities of taste

Responses of Taste buds:

- Each taste bud responds strongly to one type of taste
- But they also respond to other tastes as well


Transmission of Taste Sensations

- activation of taste buds excite taste fibers.
- anterior 2/3 of tongue through facial nerve.
- posterior 1/3 of tongue through glossopharyngeal nerve.
- posterior aspects of the mouth through vagus nerve.
- transmitted to solitary nucleus.
- from solitary nucleus to thalamus.
- from thalamus to cortex.

...

Taste Pathways

Taste Perception

- Influenced by information derived from other receptors, especially odor
- Temperature and texture of food influence taste
- Psychological experiences associated with past experiences with food influence taste
- How cortex accomplishes perceptual processing of taste sensation is currently unknown

Adaptation of Taste

- taste sensations adapt rapidly.
- adaptation of the taste buds themselves accounts for only about 50% of the adaptation.
- central adaptation must occur but the mechanism for this is not known.

Clinical considerations

- Ageusia: Absence of sense of taste
- Dysgeusia: Disturbed sense of taste
- Hypogeusia: Diminshed sense of taste
- Hypergeusia: increased sense of taste

The end