
Hypothesis Testing



Hypothesis Testing

• Objective: To test a claim about a population 
parameter 

• Hypothesis testing steps

A. Hypothesis statements

B. Test statistic

C. P-value and interpretation

D. Significance level (optional)



Step A: Hypotheses

• Convert research question to null and 
alternative hypotheses 

• The null hypothesis (H0) is a claim of “no 
difference” 

• The alternative hypothesis (Ha) says “H0 is 
false”

• The hypotheses address the population 
parameter (µ), NOT the sample statistic (x-bar)



Step A: Hypotheses

• Research question: Is mean body 
weight of a particular population 
of men higher than expected?

• Expected norm: Prior research 
(before collecting data) has 
established that the population 
should have mean μ = 170 
pounds with standard deviation σ
= 40 pounds. 

• Beware : Hypotheses are 
always based on research 
questions and expected norms, 
NOT on data!

Null hypothesis H0: μ = 170

Alternative hypothesis :

Ha: μ > 170 (one-sided) OR

Ha: μ ≠ 170 (two-sided)



Step B: Test Statistic
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Step B: Test Statistic
• For our example, μ0 = 170 and σ = 40
• Take an SRS of n = 64 
• Calculate a sample mean (x-bar) of 173
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Step C: P-Value
Convert z statistics to a P-value: 

• For Ha: μ > μ0

P-value = Pr(Z > zstat) = right-tail beyond zstat

• For Ha: μ < μ0 

P-value = Pr(Z < zstat) = left tail beyond zstat

• For Ha: μ  μ0 

P-value = 2 × one-tailed P-value



Step C: P-value (example)

Use Table B to 

determine the tail area 

associated with the 

zstat of 0.6

One-tailed P = .2743

Two-tailed P
= 2 × one-tailed P 

= 2 × .2743 = .5486



Step C: P-values
• P-value answer the 

question: What is the 
probability of the 
observed test statistic … 
when H0 is true?

• Smaller and smaller P-
values provide stronger 
and stronger evidence 
against H0



Step C: P-values 
Conventions*

P > 0.10  poor evidence against H0

0.05 < P  0.10  marginally evidence against H0

0.01 < P < 0.05  good evidence against H0

P  0.01  very good evidence against H0

Examples

P =.27  poor evidence against H0

P =.01  very good evidence against H0

* It is unwise to draw firm borders for “significance”
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• Let α ≡ threshold for “significance”
• If P-value ≤ α  evidence is significant
• If P-value  > α  evidence not significant
Example:

If α = 0.01 and P-value = 0.27  evidence 
not significant
If α = 0.01 and P-value = 0.0027  evidence 
is significant

Step D (optional) Significance Level



Power and Sample Size

Truth

Decision H0 true H0 false

Retain H0 Correct retention Type II error

Reject H0 Type I error Correct rejection

α ≡ Probability of a Type I error

β ≡ Probability of a Type II error 

Two types of decision errors:

Type I error = erroneous rejection of true H0

Type II error = erroneous retention of false H0



Power is defined as the probability that a
statistical test will reject the null hypothesis
or the ability of a statistical test to detect an
effect

In order to reject the null hypothesis (which
states that there is no relationship between
the variables of interest), power should be
at least .80

Power



Power

A power analysis provides information for
determining the minimum number of
subjects you need to collect in order to
make your study worthwhile

Power



Power

You should always perform a power analysis
before you begin your data collection,
ideally when you are designing your study

This is referred to as an a priori power
analysis which is done before you conduct
your study

Power



Power

A post-hoc power analysis is done after
you have completed your research.

When doing a post hoc power analysis you
need to know the alpha, the power you
would like to achieve (.e.g., .80) and the
effect size (small, medium or large)

Power



Power

You should also have a sense of how much
power is required to detect an effect
(difference) when conducting a power
analysis.

This is expressed as power=1 - ß,

where ß is the probability of a Type II
error

Power



Power
The Power of a test in Inferential Statistics is its
Probability of correctly accepting (Failing to
Reject) the Null Hypothesis when, in reality, the
Null is true

Power is good. Higher Power gives you a more 
accurate test.



• Power is the opposite of Beta

• Beta (𝛽) is the Probability of making a Beta
(False Negative) Error. Power is the Probability
of not making a Beta Error.

• Power = 1 − 𝜷

Power



Power



Power



• Power is affected by three factors –

Directly by Significance Level (𝜶) and Sample  

Size (n),  

and Inversely by the Effect Size (ES)

Power



Power



• If we require a low Probability of an Alpha
Error (at left), we select a low value for Alpha

(𝜶). This causes 𝜷 to increase. If 𝜷 increases,

then Power (which is 1 – 𝛽) decreases.

• So, decreasing Alpha causes Power to
decrease (if Effect Size and Sample Size remain
the same). And, increasing Alpha causes
Power to increase

Power



• Power and Effect Size, on the other hand, have 
an inverse relationship.

Power



• If we want to be able to detect a small
difference, change or effect (small Effect Size),
then we’ll need a test with more Power than
we would need for larger Effect Sizes.

• This can be achieved by increasing the Sample
Size.

Power



• Samples Size (n) affects Power directly. All
other things being equal, increasing the
Sample Size increases the Power of the test.
Reducing the Sample Size reduces the Power.

• Therefore, Power is a function of Alpha, Effect
Size, and Sample Size.

Power

Power = f (Alpha, Effect Size, Sample Size)



• p is the probability of alpha error, used for 
analyzing the test results

• 𝜷 is the probability of beta error, used to 
determine the minimum Sample Size needed 
to detect a difference, change, or effect of a 
given Effect Size

Power



Power

• β ≡ probability of a Type II error

β = Pr(retain H0 | H0 false)
(the “|” is read as “given”) 

• 1 – β = “Power” ≡ probability of avoiding a 
Type II error

1– β = Pr(reject H0 | H0 false)

Power



Power of a z test

where 

• Φ(z) ≡ cumulative probability of Standard 
Normal value z

• μ0 ≡ population mean under H0

• μa ≡ population mean under Ha
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Calculating Power: Example
A study of n = 16 retains H0: μ = 170 at α = 0.05 

(two-sided); σ is 40. What was the power of test to 

identify a population mean of 190?
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Reasoning of Power Calculation

• Competing “theories”

Top curve (next page) assumes H0 is true 

Bottom curve assumes Ha is true

α set to 0.05 (two-sided)

• Reject H0 when sample mean exceeds 189.6 (right 
tail, top curve)

• Probability of a value greater than 189.6 on the 
bottom curve is 0.5160, corresponding to the power 
of the test





Sample Size Requirements
Sample size for one-sample z test: 

where 

1 – β ≡ desired power

α ≡ desired significance level (two-sided) 

σ ≡ population standard deviation

Δ = μ0 – μa ≡ the difference worth detecting
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Example: Sample Size Requirement

How large a sample is needed to test H0: μ = 170 
versus Ha: μ = 190 with 90% power and α = 0.05 
(two-tailed) when σ = 40? 
Note: Δ = μ0 − μa = 170 – 190 = −20

Round up to 42 to ensure adequate power.
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Illustration: conditions 

for 90% power.



Sample Size 
Determination



• The sample size calculated from a sample size 
formula is known as the minimum number of 
sample units needed to detect a significant 
effect of the test statistic result

• In other words, to prevent committing type II 
error



Sample size for Proportions

A Proportion is a percentage expressed as a 
decimal. So 50% is 0.50 and 100% is 1.0. 

Statistical formulas usually use the Proportion 
format.



Examples of Proportions of Count Data



Sample size for Proportions

• The symbol for a Proportion is p. That is also 
the symbol for Probability.

• If the Proportion of people favoring Candidate 
A is 0.55 then the Probability of any one 
person favoring Candidate A is 0.55.



Sample size for Proportions

• The formula for calculating n, the Sample Size, 

includes four symbols, 𝛼, p, MOE, and z.



Alpha, 𝜶
• Alpha is called the Level of Significance, and it 

is involved with the concept of Alpha Error.

• Can be thought of as the “Lack-of-Confidence” 
Level



Sample size for Proportions

• In statistics, we don’t have a symbol for the 
Confidence Level, but we do for its opposite. 
The symbol is the Greek letter Alpha (𝛼).



The person performing the statistical analysis
selects a value for Alpha prior to collecting data
for the Sample.

If we want to be 95% Confident that our Sample
is representative of the overall Population or
Process, that means that we are willing to
accept the fact that 5% of the time we will
collect a Sample which is not representative.

In that case, we would select 𝛼 = 5%. (That is the
value most commonly selected.)



Sample size for Proportions

You may be wondering why you have to settle
for 5% or some other number. Why can’t you
have 0%?

Statistically, the only way you can get 𝛼 = 0% is if
you poll 100% of the Population or Process.



MOE is the Margin of Error, sometimes 

denoted by “E,” instead of MOE

The actual Population or Process Proportion will
very likely not be the exact number which we
calculate for p from Sample data. But, we would
like it limited to a narrow range. How narrow is
specified by the Margin of Error, MOE.

So, if we say “plus or minus 3%,” then MOE =
3%



Sample size for Proportions

We specify the values of Alpha and 
Margin of Error prior to collecting the 

Sample data and beginning the 
analysis



Sample size for Proportions

When there is an estimate, p ̂, for the 

Population/Process  Proportion, the formula for 
the minimum Sample Size is



When there is not an estimate, or if you

want to take the most conservative approach,

set p ̂ = 0.5 and the formula becomes

Sample size for Proportions



• This formula assumes you don’t know the
Population Size (N). If you do know N, divide
the n above by 1 + n/N

Sample size for Proportions



p ̂ is an estimate (or a default) for the actual 
Proportion of the Population or Process

The estimate must be from the same Population 
or Process. (It can be another survey, an earlier 
sample)

Sample size for Proportions



With an estimate, there is always a chance for 
error. Some things may have been different in 
the other survey, or some Factors may have 
changed since the earlier production run.

Sample size for Proportions



• The most conservative approach would be to
use the default value of p ̂ which gives the
maximum value for the product (p ̂) (1 − p ̂).
That is, p ̂ = 0.5 (50%).

• As demonstrated in the following table, the
closer p is to 0.5, the larger the value of the
product of p ̂ multiplied by 1 − p ̂, and thus,
the larger the value of n

Sample size for Proportions



Sample size for Proportions



Note: There are websites 
which will do all these 

calculations for you

Sample size for Proportions





So if we select 𝛼 = 5%, we get z = 1.960. If we
specify that we want the Margin of Error to be
3%, we can use the default formula to calculate
a Sample Size:

Sample size for Proportions



Sample size for Proportions

So, we will need to poll at least 1068 people 
to be 95% Confident with a 3% Margin of 

Error



What if we can’t afford the time or money to 
collect data of the calculated Sample Size?

We can sacrifice some accuracy in either the 
Level of Confidence or the Margin of Error or 

both

Sample size for Proportions



• Let’s say we can only afford to poll 625
people. What can we do? With a little algebra,
we see that we can plug in a value for n and
then calculate either MOE or z𝛼/2.

• Here’s how we calculate MOE, given n = 625,
p ̂ = 0.5, and z𝛼/2:

Sample size for Proportions



Sample size for Proportions

So, if we reduce the minimum Sample Size from
1068 to 625, that increases the Margin of Error
from 3% to about 4%



• For a given Sample Size, Alpha and Margin of 
Error affect each other inversely

• If we select a lower value of Alpha (which 
means a higher Level of Confidence), the 
Margin of Error increases.

• If we select a higher value for Alpha, the 
Margin of Error decreases

Sample size for Proportions



• The only way to reduce both is to increase the 
Sample Size

Sample size for Proportions



• The following things increase the minimum 
Sample Size:

– Higher Level of Confidence (i.e., smaller value of 
Alpha) selected

– Smaller Margin of Error specified

– Estimated Proportion closer to 0.5

Sample size for Proportions



Sample size for quantitative data

The minimum Sample Size calculations can be 
done using

• 𝜶, the selected Level of Significance

• 𝝈, Standard Deviation of the Population or 
Process (or an estimate of it)

• MOE, the desired Margin of Error


